zbMATH — the first resource for mathematics

Unipotent characters of the Chevalley groups \(D_ 4(q)\), \(q\) odd. (English) Zbl 0813.20016
The authors determine (using the computer algebra systems GAP and MAPLE) the values of the unipotent characters of the Chevalley groups \(D_ 4(q)\) where \(q\) is an odd prime power. The work is based on G. Lusztig’s parametrization of characters [Characters of reductive groups over finite fields (Ann. Math. Stud. 107, 1984; Zbl 0556.20033)] of such groups and the work of B. Srinivasan on the Green functions for some classical groups. As an application to the modular representations of such groups the authors prove that the unique cuspidal unipotent character of \(D_ 4(q)\) remains irreducible as \(\ell\)-modular Brauer character for all primes \(\ell\) not dividing \(q\).

20C33 Representations of finite groups of Lie type
20G05 Representation theory for linear algebraic groups
20G40 Linear algebraic groups over finite fields
GAP; Maple
Full Text: DOI EuDML
[1] Borel, A. et. al.: Seminar on Algebraic Groups and Related Finite Groups. Lecture Notes in Mathematics 131, Springer Verlag, 1986
[2] Broué, M. etMichel, J.: Blocs et séries de Lusztig dans un groupe réductif fini. J. reine angew. Math. 395 (1989), 56–67
[3] Carter, R. W.: Centralizers of semisimple elements in finite groups of Lie type. Proc. London Math. Soc. 37 (1978), 491–507 · Zbl 0408.20031 · doi:10.1112/plms/s3-37.3.491
[4] Carter, R. W.: Finite Groups of Lie Type: Conjugacy Classes and Complex Characters. Wiley, New York, 1985 · Zbl 0567.20023
[5] Char, B.W., Geddes, K.O., Gonnet, G.H., Monagan, M.B., Watt, S.M.: MAPLE-Reference Manual, 5th edition. University of Waterloo, 1988
[6] Digne, F. et Michel, J.: Representations of finite groups of Lie type. London Math. Soc. Students Texts 21, Cambridge University Press, 1991 · Zbl 0815.20014
[7] Fleischmann, P. andJaniszak, I.: On semisimple conjugacy classes of finite groups of Lie type. Preprint Nr. 1, Institut für experimentelle Mathematik, Essen, 1991
[8] Fong, P. andSrinivasan, B.: The Blocks of Finite General Linear and Unitary Groups, Invent. Math. 69, 109–153 (1982) · Zbl 0507.20007 · doi:10.1007/BF01389188
[9] Geck, M. andHiss, G.: Basic sets of Brauer characters of finite groups of Lie type. J. reine angew. Math. 418 (1991), 173–188 · Zbl 0771.20008
[10] Hiss, G.: Decomposition numbers of finite groups of Lie type in non-defining characteristic.In: Progress in Mathematics, Vol. 95, 405–418, Birkhäuser Verlag Basel 1991 · Zbl 0823.20014
[11] Kawanaka, N.: Shintani Lifting and Gelfand-Graev Representations. Proc. Symp. Pure Math., Am. Math. Soc. 47 (1986), 575–616 · Zbl 0596.20028
[12] Lambe, L. andSrinivasan, B.: A computation of Green functions for some classical groups. Comm. Algebra 18(10), 3507–3545 (1990) · Zbl 0770.20021 · doi:10.1080/00927879008824089
[13] Lehrer, G.I.: On the values of characters of semisimple groups over finite fields. Osaka J. Math. 15 (1978), 77–99 · Zbl 0412.20038
[14] Lusztig, G.: Characters of reductive groups over a finite field. Annals of math. studies 107, Princeton University Press, 1984 · Zbl 0556.20033
[15] Lusztig, G.: A unipotent support for irreducible representations. Preprint · Zbl 0789.20042
[16] Mizuno, K.: The conjugate classes of Chevalley groups of typeE 6. J. Fac. Sci. Univ. Tokyo 24 (1977), 525–563 · Zbl 0399.20044
[17] Schönert, M. (ed.): GAP 3.0 Manual, Lehrstuhl D für Mathematik, RWTH Aachen (1991)
[18] Spaltenstein, N.: Caractères unipotents de \(^3 D_4 \left( {\mathbb{F}q} \right)\) . Comm. Math. Helvetici 57 (1982), 676–691 · Zbl 0536.20025 · doi:10.1007/BF02565880
[19] Steinberg, R.: The Representations ofGL(3, q), GL(4, q), PGL(3, q) andPGL(4, q). Can. J. Math. 3 (1951), 225–234 · Zbl 0042.25602 · doi:10.4153/CJM-1951-027-x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.