Hedenmalm, Per Jan Håkan A computation of Green functions for the weighted biharmonic operators \(\Delta| z| ^{-2\alpha}\Delta\), with \(\alpha > -1\). (English) Zbl 0813.31001 Duke Math. J. 75, No. 1, 51-78 (1994). Ayant précisé le domaine de définition de l’opérateur \(\Delta(| z|^{-2 \alpha} \Delta)\) sur le disque-unité \(D\), on montre qu’une fonction appartenant à ce domaine, au noyau de l’opérateur, et à \({\mathcal C}^ 1(\overline D \backslash \{0\})\), qui s’annule ainsi que son gradient à la frontière de \(D\), est la constante 0. On détermine ainsi de façon unique une fonction de Green \(U_ \alpha\), que l’on calcule explicitement pour \(\alpha\) entier; pour \(\alpha\) non entier, \(U_ \alpha\) est donnée par une formule intégrale où figure la fonction de Green de \(\Delta\) sur \(D\), et peut aussi s’exprimer à l’aide de la fonction de Green de \(\Delta (e^{2Im z} \Delta)\) sur le demi-plan \(\text{Im } z>0\). Reviewer: R.-M.Hervé (Paris) Cited in 2 ReviewsCited in 17 Documents MSC: 31A30 Biharmonic, polyharmonic functions and equations, Poisson’s equation in two dimensions 35J60 Nonlinear elliptic equations Keywords:weighted biharmonic operator; Green’s function × Cite Format Result Cite Review PDF Full Text: DOI References: [1] E. Almansi, Sulla ricerca delle funzioni poli-armoniche in un’area piana semplicemente connessa per date condizioni al contorno , Rend. Cir. Mat. Palermo (2) 13 (1899), 225-262. · JFM 30.0375.03 [2] S. Bergman and M. Schiffer, Kernel functions and elliptic differential equations in mathematical physics , Academic Press Inc., New York, N. Y., 1953. · Zbl 0053.39003 [3] T. Boggio, Integrazione dell’equazione \(\Delta^2 \Delta^2 =0\) in un’area ellittica , Atti. Reale Instituto Veneto Sci. 60 (1901), 519-609. · JFM 32.0371.01 [4] T. Boggio, Sull’equilibrio delle piastre elastiche incastrate , Atti della reale Accademia dei Lincei 10 (1901), 197-205. · JFM 32.0807.01 [5] R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol.I , Wiley Classics Lib., Wiley, New York, 1989, originally published in 1924 in German by Verlag von Julius Springer. · Zbl 0729.35001 [6] R. J. Duffin, On a question of Hadamard concerning super-biharmonic functions , J. Math. Physics 27 (1949), 253-258. · Zbl 0033.06402 [7] P. L. Duren, D. Khavinson, H. S. Shapiro, and C. Sundberg, Contractive zero-divisors in Bergman spaces , Pacific J. Math. 157 (1993), no. 1, 37-56. · Zbl 0739.30029 · doi:10.2140/pjm.1993.157.37 [8] P. R. Garabedian, A partial differential equation arising in conformal mapping , Pacific J. Math. 1 (1951), 485-524. · Zbl 0045.05102 · doi:10.2140/pjm.1951.1.485 [9] J. Hadamard, Mémoire sur le probleme d’analyse relatif à l’équilibre des plaques élastiques encastrées , Mémoires preésentés par divers savants étrangers à l’Academie des Sciences 33 (1908), 515-629. · JFM 39.1022.01 [10] J. Hadamard, Œuvres de Jacques Hadamard. Tomes I, II, III, IV , Comité de publication des oeuvres de Jacques Hadamard: M. Fréchet, P. Levy, S. Mandelbrojt, L. Schwartz, Éditions du Centre National de la Recherche Scientifique, Paris, 1968. [11] W. K. Hayman and B. Korenblum, Representation and uniqueness theorems for polyharmonic functions , J. Analyse Math. 60 (1993), 113-133. · Zbl 0793.31002 · doi:10.1007/BF03341969 [12] H. Hedenmalm, A factorization theorem for square area-integrable analytic functions , J. Reine Angew. Math. 422 (1991), 45-68. · Zbl 0734.30040 · doi:10.1515/crll.1991.422.45 [13] H. Hedenmalm, A factoring theorem for the Bergman space , to appear in Bull. London Math. Soc. · Zbl 0817.30017 · doi:10.1112/blms/26.2.113 [14] H. Hedenmalm, A factorization theorem for a weighted Bergman space , St. Petersburg Math. J. 4 (1993), 163-174. · Zbl 0791.30032 [15] H. Hedenmalm and K. Zhu, On the failure of optimal factorization for certain weighted Bergman spaces , Complex Variables Theory Appl. 19 (1992), no. 3, 165-176. · Zbl 0768.30006 [16] C. Horowitz, Zeros of functions in the Bergman spaces , Duke Math. J. 41 (1974), 693-710. · Zbl 0293.30035 · doi:10.1215/S0012-7094-74-04175-1 [17] V. A. Kozlov, V. A. Kondrat’ev, and V. G. Maz’ya, On sign variation and the absence of “strong” zeros of solutions of elliptic equations , Math. USSR-Izv. 34 (1990), 337-353. · Zbl 0701.35062 · doi:10.1070/IM1990v034n02ABEH000649 [18] C. Loewner, On generation of solutions of the biharmonic equation in the plane by conformal mappings , Pacific J. Math. 3 (1953), 417-436. · Zbl 0050.32306 · doi:10.2140/pjm.1953.3.417 [19] J. H. Michell, The flexure of a circular plate , Proc. London Math. Soc. 34 (1901-1902), 223-228. · JFM 33.0821.01 [20] M. Nakai and L. Sario, Duffin’s function and Hadamard’s conjecture , Pacific J. Math. 75 (1978), no. 1, 227-242. · Zbl 0338.31012 · doi:10.2140/pjm.1978.75.227 [21] G. Szegö, Remark on the preceding paper of Charles Loewner , Pacific J. Math. 3 (1953), 437-446. · Zbl 0050.32307 · doi:10.2140/pjm.1953.3.437 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.