×

zbMATH — the first resource for mathematics

The trace problem and Hardy operator for non-isotropic function spaces on the Heisenberg group. (English) Zbl 0813.31005
The author proves trace and extension theorems for non-isotropic Sobolev space functions and Besov space functions on the Heisenberg group.

MSC:
31B20 Boundary value and inverse problems for harmonic functions in higher dimensions
43A15 \(L^p\)-spaces and other function spaces on groups, semigroups, etc.
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aronszajn N., On coercive integro-diffenential forms pp 94– (1955)
[2] Aronszajn N., On spaces of potentials connected with L\(sub:p\)esub: classes. 13 pp 211– (1963)
[3] Besov, O. 1961.Investigation of a family of function spaces in connection with theorems of imbeddings and extensions, Vol. 60, 42–81. Steklov: Trudy Mat. Inst. Amer. Math. Soc. Translations ser.2,40(1964),161–207
[4] Folland G., Estimates for the bcomplex and analysis on the Heisenberg group. 27 pp 429– (1974)
[5] Folland G., Subelliptic estimates and function spaces on milpotent Lie group 13 pp 161– (1975)
[6] Gagliardo, E. 1957.Caratheizzazione delle trace sulla frontiera relative ad aleune classi di funziora in n variabili, Vol. 27, 284–305. Padova: Rend. Sem. Mat. Univ. M.R. 21, 1525 · Zbl 0087.10902
[7] Jerison D., The Dirichlet problem for the Kohn Laplacian on the Heisenberg group. 43 pp 284– (1987)
[8] Hörmander L., Hypoelliptic second order differential equations 119 pp 147– (1967) · Zbl 0156.10701
[9] Krantz S., Analysis on the Heisenberg group and estimates for functions in Hardy classes of several complex variables 244 pp 243– (1979) · Zbl 0401.43004
[10] DOI: 10.1007/BF02392539 · Zbl 0578.32044 · doi:10.1007/BF02392539
[11] Nagel A., Estimates for the Bergman and Szegö kernels in Cp:2 129 pp 113– (1989)
[12] Pesenson, I. 1979.On Interpolation Spaces on Lie Groups, Vol. 246, 1298–1303. Dokl. Acad. Nauk SSSR. Trans.:Sovit Math. Dokl 28(1989),113-149
[13] Pesenson, I. 1983.The Nikol’skii-Besov spaces Connected with Representations of Lic Groups, Vol. 273, 45–49. Dokl. Akad. Nauk SSSR. Transl.: Soviet Math. Dokl. 28 (1983).577-581
[14] Pesenson, I. 1990.Functions which are smooth along vector fields, Vol. 48, 95–104. Mat. Zametki. Transl.: Notes of the Aczdemy of Sciences of the USSR, 3 (1901). 683-688
[15] Rothschild L., Hypoelliptic differential operators and nilpotent groups 137 pp 247– (1976)
[16] Seeley R., Extension of C functions defined in half-space 15 pp 625– (1964) · Zbl 0127.28403
[17] Slobodeckii, L. 1958.Sobolev’s spaces of fractional order and their application to boundary problems for partial differential equations, Vol. 118, 243–246. Russian: Dokl. Akad. Nauk SSSR. M.R. 21,5059
[18] Stein E., The characterization of functions arising as potentials. I 67 pp 102– (1961)
[19] Triebel H., Interpolation theory (1978) · Zbl 0387.46033
[20] Varopoulos N., Analysis on Lie groups 76 pp 346– (1988)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.