## Blow-up behaviour of one-dimensional semilinear parabolic equations.(English)Zbl 0813.35007

Summary: Consider the Cauchy problem $u_ t - u_{xx} - F(u) = 0; \quad x \in \mathbb{R}, \quad t > 0, \qquad u(x,0) = u_ 0(x); \quad x \in \mathbb{R}$ where $$u_ 0(x)$$ is continuous, nonnegative and bounded, and $$F(u) = u^ p$$ with $$p>1$$, or $$F(u) = e^ u$$. Assume that $$u$$ blows up at $$x = 0$$ and $$t = T > 0$$. In this paper we describe the various possible asymptotic behaviours of $$u(x,t)$$ as $$(x,t) \to (0,T)$$. Moreover, we show that if $$u_ 0(x)$$ has a single maximum at $$x=0$$ and is symmetric, $$u_ 0(x) = u_ 0 (-x)$$ for $$x>0$$, there holds
1) If $$F(u) = u^ p$$ with $$p>1$$, then $\begin{split} \lim_{t \uparrow T} u \biggl( \xi \bigl( (T-t) | \log (T - t) | \bigr)^{1/2}, t \biggr) \\ \times (T-t)^{1/(p-1)} = (p-1)^{-(1/(p-1))} \left[ 1 + {(p-1) \xi^ 2 \over 4p} \right]^{-(1/(p-1))} \end{split}$ uniformly on compact sets $$| \xi | \leq R$$ with $$R>0$$,
2) If $$F(u) = e^ u$$, then $\lim_{t \uparrow T} \Bigl( u \biggl( \xi \bigl( (T-t) | \log (T-t) | \bigr)^{1/2}, t \biggr) + \log (T - t) \Bigr) = - \log \left[ 1 + {\xi^ 2 \over 4} \right]$ uniformly on compact sets $$| \xi | \leq R$$ with $$R>0$$.

### MSC:

 35B40 Asymptotic behavior of solutions to PDEs 35K15 Initial value problems for second-order parabolic equations 35K57 Reaction-diffusion equations
Full Text:

### References:

  Angenent, S., The Zero Set of a Solution of a Parabolic Equation, J. reine angew Math., Vol. 390, 79-96 (1988) · Zbl 0644.35050  Angenent, S. B.; Fiedler, B., The Dynamics of Rotating Waves in Scalar Reaction-Diffusion Equations, Trans. Amer. Math. Soc., Vol. 307, 545-568 (1988) · Zbl 0696.35086  Aronson, D. G.; Weinberger, H. F., Multidimensional Nonlinear Diffusion arising in Population Genetics, Advances in Math., Vol. 30, 33-76 (1978) · Zbl 0407.92014  Bebernes, J.; Bressan, A.; Eberly, D., A Description of Blow-up for the Solid Fuel Ignition Model, Indiana Univ. Math. J., Vol. 36, 131-136 (1987)  Bressan, A., On the Asymptotic Shape of Blow-up, Indiana Univ. Math. J., Vol. 39, 947-960 (1990) · Zbl 0705.35014  Chen, X. Y.; Matano, H.; Veron, L., Anisotropic Singularities of Solutions of Nonlinear Elliptic Equations in $$ℝ^2$$, J. Fund. Anal., Vol. 83, 50-93 (1989)  Cohen, P. J.; Lees, M., Asymptotic decay of Differential Inequalities, Pacific J. Math., Vol. 11, 1235-1249 (1961) · Zbl 0171.35002  Dold, J., Analysis of the Early Stage of Thermal Runaway, Quart. J. Mech. Appl. Math., Vol. 38, 361-387 (1985) · Zbl 0569.76079  Friedman, A.; McLeod, J. B., Blow-up of positive Solutions of Semilinear Heat Equations, Indiana Univ. Math. J., Vol. 34, 425-447 (1985) · Zbl 0576.35068  Fujita, H., On the Blowing-up of Solutions of the Cauchy Problem for $$u_t = Δ u + u^{1+α}$$, J. Fac. Sci. Univ. of Tokio, Section I, Vol. 13, 109-124 (1966) · Zbl 0163.34002  Galaktionov, V. A.; Herrero, M. A.; Velázquez, J. J.L., The Space Structure near a Blow-up Point for Semilinear Heat Equations: a formal Approach, Soviet J. Comput. Math, and Math. Physics, Vol. 31, 399-411 (1991)  Galakationov, V. A.; Posashkov, S. A., Application of new Comparison Theorems in the Investigation of Unbounded Solutions of nonlinear Parabolic Equations, Diff Urav., Vol. 22, 7, 1165-1173 (1986)  Giga, Y.; Kohn, R. V., Asymptotically Self-Similar Blow-up of Semilinear Heat Equations, Comm. Pure Appl. Math., Vol. 38, 297-319 (1985) · Zbl 0585.35051  Giga, Y.; Kohn, R. V., Characterizing Blow-up using Similarity Variables, Indiana Univ. Math., J., Vol. 36, 1-40 (1987) · Zbl 0601.35052  Giga, Y.; Kohn, R. V., Nondegeneracy of Blow-up for Semilinear Heat Equations, Comm. Pure Appl. Math., Vol. 42, 845-884 (1989) · Zbl 0703.35020  Herrero, M. A.; Velázquez, J. J.L., Flat Blow-up in One-Dimensional Semilinear Heat Equations, Differential and Integral Equations, Vol. 5, 973-997 (1992) · Zbl 0767.35036  Lacey, A. A., The Form of Blow-up for Nonlinear Parabolic Equations, Proc. Royal Soc. Edinburgh, Vol. 98 A, 183-202 (1984) · Zbl 0556.35077  Lax, P. D., A Stability Theorem for Solutions of Abstract Differential Equations, and its Application to the Study of the Local behaviour of Solutions of Elliptic Equations, Comm. Pure Appl. Math., Vol. 9, 747-766 (1956) · Zbl 0072.33004  Liu, W., The Blow-up Rate of Solutions of Semilinear Heat Equations, J. Diff Equations, Vol. 77, 104-122 (1989) · Zbl 0672.35035  Müller, C. E.; Weissler, F. B., Single Point Blow-up for a General Semilinear Heat Equation, Indiana Univ. Math., Vol. 34, 881-913 (1983) · Zbl 0597.35057  Weissler, F. B., Single Point Blow-up of Semilinear Initial Value Problems, J. Diff. Equations, Vol. 55, 204-224 (1984) · Zbl 0555.35061  Watson, N. A., Parabolic Equations on an Infinite Strip, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 127 (1988), Marcel Dekker  Widder, D. V., The Heat Equation (1975), Academic Press: Academic Press New York · Zbl 0322.35041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.