Sharp bounds on the number of scattering poles in even-dimensional spaces. (English) Zbl 0813.35075

Scattering poles or resonances can be defined as the poles of the meromorphic continuation of the cut-off resolvent of say a Laplace operator under perturbation when such a continuation exists. For odd space dimension \((\geq 3)\) the cut off resolvent extends meromorphically to the entire complex plane while in the even dimensional case a meromorphic extension is possible only in the Riemann logarithmic surface \(\Lambda = \{Z : - \infty < \arg z < \infty\}\).
Upper bounds on the member of scattering poles in odd dimensions are derived using Jensen’s inequality on the zeros of holomorphic functions. In the odd case, given certain localization hypotheses on the operator \(G\) with resolvent \(R(Z)\), it is shown that the operator \(R_ \chi (Z) = \chi R(Z) \chi,\chi=1\) on \(B_ \rho=\{x:| x|\leq\rho\}\), extends meromorphically to \(\Lambda\) with poles \(\lambda_ j\). The scattering poles in \(\Lambda_ r = \{\Lambda_ n | z | < r\}\), with multiplicity, are among the zeros of a function \(h_ r(Z) = \text{det} (I-S_ r (Z))\), holomorphic in \(\Lambda_ r\), where \(S_ r(Z)\) is a function defined in a fairly complex way from \(R_ \chi (Z)\). Again the author establishes an analogue of Jensen’s inequality for functions holomorphic on the Riemann logarithmic surface using a generalised version of the classical Carleman theorem. As a consequence he is able to determine that the counting function \(N(r,a)\) of the scattering poles of \(G\) satisfies the bound \[ N(r,a) \leq Ca \bigl( \varphi (Cr) + (j \circ ga)^ n \bigr), \quad \forall r,\;a>1, \] with a constant \(C>0\) independent of \(r\) and \(a\), where \(\varphi\) is a function whose growth properties are related to the smoothing properties of \(G\).


35P25 Scattering theory for PDEs
35J10 Schrödinger operator, Schrödinger equation
47A40 Scattering theory of linear operators
Full Text: DOI


[1] A. Intissar, A polynomial bound on the number of the scattering poles for a potential in even-dimensional spaces \(\mathbf R^ n\) , Comm. Partial Differential Equations 11 (1986), no. 4, 367-396. · Zbl 0607.35069 · doi:10.1080/03605308608820428
[2] A. Intissar, On the value distribution of the scattering poles associated to the Schrödinger operator \(H=(--i\nabla+b(x))^2+a(x)\) in \(\mathbf R^n, n\geqslant3\) , · Zbl 0603.47004
[3] P. D. Lax and R. S. Phillips, Scattering theory , Pure and Applied Mathematics, Vol. 26, Academic Press, New York, 1967. · Zbl 0186.16301
[4] B. Ja. Levin, Distribution of Zeros of Entire Functions , Trans. Math. Monographs, vol. 5, Amer. Math. Soc., Providence, R.I., 1964. · Zbl 0152.06703
[5] R. Melrose, Polynomial bound on the number of scattering poles , J. Funct. Anal. 53 (1983), no. 3, 287-303. · Zbl 0535.35067 · doi:10.1016/0022-1236(83)90036-8
[6] R. B. Melrose, Polynomial bounds on the distribution of the poles in scattering by obstacle , Journées “Equations aux Dérivées partielles”, Saint-Jean-de-Montes, 1984. · Zbl 0621.35073
[7] R. B. Melrose, Weyl asymptotics for the phase in obstacle scattering , Comm. Partial Differential Equations 13 (1988), no. 11, 1431-1439. · Zbl 0686.35089 · doi:10.1080/03605308808820582
[8] J. Sjöstrand and M. Zworski, Complex scaling and the distribution of scattering poles , J. Amer. Math. Soc. 4 (1991), no. 4, 729-769. JSTOR: · Zbl 0752.35046 · doi:10.2307/2939287
[9] J. Sjöstrand and M. Zworski, Lower bounds on the number of scattering poles , Comm. Partial Differential Equations 18 (1993), no. 5-6, 847-857. · Zbl 0784.35070 · doi:10.1080/03605309308820953
[10] J. Sjöstrand and M. Zworski, Lower bounds on the number of scattering poles, II , J. Functional AnaL., · Zbl 0823.35137 · doi:10.1006/jfan.1994.1092
[11] B. R. Vainberg, Asymptotic methods in equations of mathematical physics , Gordon & Breach Science Publishers, New York, 1989. · Zbl 0743.35001
[12] G. Vodev, Sharp polynomial bounds on the number of scattering poles for metric perturbations of the Laplacian in \(\mathbf R^ n\) , Math. Ann. 291 (1991), no. 1, 39-49. · Zbl 0754.35105 · doi:10.1007/BF01445189
[13] G. Vodev, Sharp bounds on the number of scattering poles for perturbations of the Laplacian , Comm. Math. Phys. 146 (1992), no. 1, 205-216. · Zbl 0766.35032 · doi:10.1007/BF02099213
[14] M. Zworski, Sharp polynomial bounds on the number of scattering poles of radial potentials , J. Funct. Anal. 82 (1989), no. 2, 370-403. · Zbl 0681.47002 · doi:10.1016/0022-1236(89)90076-1
[15] M. Zworski, Sharp polynomial bounds on the number of scattering poles , Duke Math. J. 59 (1989), no. 2, 311-323. · Zbl 0705.35099 · doi:10.1215/S0012-7094-89-05913-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.