zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Wavelets and self-affine tilings. (English) Zbl 0813.42021
The author generalizes the standard construction of a wavelet basis and multiresolution analyses to the case of periodic (a lattice subgroup $\Gamma\subset \bbfR\sp n$ translates the tiles transitively), self- affine (there exists a strictly expansive matrix $M$ which maps $\Gamma$ into itself and maps a tile $T$ onto a union of $m$ other tiles, where $m= \vert\text{det }M\vert)$ tilings of $\bbfR\sp n$. The standard wavelet bases correspond to the case when $\Gamma= \bbfZ\sp n$, $M= 2I$ ($I$=identity matrix) and $m= 2\sp n$. The main result is that, assuming the existence of a self-affine {\it lattice} tiling such that the $m$ translates of a given tile $T$ by distinguished elements in each coset of $M\Gamma$ in $\Gamma$ exactly cover the affine dilation $MT$ of $T$, there exists a so-called $r$-regular multiresolution analysis and an associated wavelet basis for every $r$. Here the term “$r$-regular” means that the functions $\psi\sb 1,\dots, \psi\sb m$ forming a wavelet basis associated to a multiresolution analysis satisfy the condition that they are $C\sp r$ and rapidly decreasing in the sense that $$\vert(\partial/\partial x)\sp \alpha \psi\sb i(x)\vert \le c\sb m(1+ \vert x\vert)\sp{-m}$$ for all $m$ and $i$ and $\vert\alpha\vert\le r$. A final section concerns the existence of self-similar tilings (the matrix $M$ is a similitude).
Reviewer: J.S.Joel (Kelly)

42C40Wavelets and other special systems
51M20Polyhedra and polytopes; regular figures, division of spaces
52C22Tilings in $n$ dimensions (discrete geometry)
Full Text: DOI
[1] [Ba]C. Bandt (1991): Self-similar sets 5. Integer matrices and fractal tilings of ? n . Proc. Amer. Math. Soc.,112:549-562. · Zbl 0743.58027
[2] [Be]T. Bedford (1986):Generating special Markov partitions for hyperbolic toral automorphisms using fractals. Ergodic Theory Dynamical Systems,6:325-333. · Zbl 0628.58028
[3] [C]A. Cohen (1990):Ondelettes, analyses multirésolutions et filtres miroir en quadrature, Ann. Inst. H. Poincaré. Anal. Non Linéaire,7:439-459. · Zbl 0736.42021
[4] [CD]A. Cohen, I. Daubechies (preprint):Non-separable bidimensional wavelet bases.
[5] [CS]A. Cohen, J.-M. Schlenker (1993):Compactly supported bidimensional wavelet bases with hexagonal symmetry. Constr. Approx.,9:209-236. · Zbl 0773.41032 · doi:10.1007/BF01198004
[6] [Da]I. Daubechies (1992): Ten Lectures on Wavelets. CBMS-NSF Conference in Applied Mathematics, vol. 61. Philadelphia, PA: SIAM. · Zbl 0776.42018
[7] [De1]F. M. Dekking (1982):Recurrent sets. Adv. in Math.,44:78-104. · Zbl 0495.51017 · doi:10.1016/0001-8708(82)90066-4
[8] [De2]F. M. Dekking (1992):Replicating superfigures and endomorphisms of free groups. J. Combin. Theory Ser. A,32:315-320. · Zbl 0492.05019 · doi:10.1016/0097-3165(82)90048-6
[9] [GH]K. Gröchenig, A. Haas (preprint):Self-similar lattice tilings.
[10] [GM]K. Gröchenig, W. R. Madych (to appear): Multiresolution analyses, Haar bases, and self-similar tilings of ? n . Trans. IEEE.
[11] [GS]B. Grunbaum, G. C. Shephard (1987): Tilings and Patterns. New York: Freeman.
[12] [K]R. W. Renyon (1990): Self-Similar Tilings. Thesis, Princeton University.
[13] [LR]W. M. Lawton, H. L. Resnikoff (preprint):Multidimensional wavelet bases.
[14] [L]P. G. Lemarié (1989):Base d’ondelettes sur les groupes de Lie stratifiés. Bull. Soc. Math. France,117:211-232. · Zbl 0711.43004
[15] [Ma]W. R. Madych (1992): Some elementary properties of multiresolution analyses ofL 2? n . In: Wavelets: A Tutorial in Theory and Applications (C. K. Chui, ed.). New York: Academic Press.
[16] [Me]Y. Meyer (1990): Ondelettes et operateurs, 3 volumes. Paris: Hermann.
[17] [S1]R. Strichartz (to appear):Self-similarity on nilpotent Lie groups. Contemp. Math.
[18] [S2]R. Strichartz (to appear):Construction of orthonormal wavelets. In: Wavelets: Mathematics and Applications (J. Benedetto, M. Frazier, eds.). CRC Press.
[19] [T]W. P. Thurston (1989)Groups, tilings, and finite state automata, Lecture Notes, Summer Meeting of the American Mathematical Society, Boulder.
[20] [W]T. W. Weiting (1982): The Mathematical Theory of Cromatic Plane Ornaments. New York: Marcel Dekker.