zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Convergence of the conditional Kaplan-Meier estimate under strong mixing. (English) Zbl 0813.62042
Summary: We establish the uniform almost complete consistency of the Kaplan-Meier conditional estimate, for stationary strongly mixing processes, in the presence of right censoring.

62G20Nonparametric asymptotic efficiency
62G07Density estimation
62G05Nonparametric estimation
62M09Non-Markovian processes: estimation
Full Text: DOI
[1] Beran, R.: Nonparametric regression with randomly censored survival data. Technical report (1981)
[2] Bosq, D.; Lecoutre, J. P.: Théorie de l’estimation fonctionnelle. (1987)
[3] Carbon, M.: Inégalités de grandes déviations dans LES processus. Applications à l’estimation fonctionnelle (1988)
[4] Dabrowska, D. M.: Nonparametric regression with censored survival time data. Scand. J. Statist. 14, 181-197 (1987) · Zbl 0641.62024
[5] Dabrowska, D. M.: Uniform consistency of the kernel conditional kaplan-meier estimate. Ann. statist. 17, 1157-1167 (1989) · Zbl 0687.62035
[6] Doukhan, P.: Mixing: examples and properties. (1992) · Zbl 0801.60027
[7] Dvoretzky, A.; Kiefer, J.; Wolfowitz, J.: Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator. Ann. math. Statist. 27, 642-669 (1956) · Zbl 0073.14603
[8] Gill, R. D.: Censoring and stochastic integrals. Mathematical centre tracts 124 (1980) · Zbl 0456.62003
[9] Horvath, L.; Yandell, B. S.: Asymptotics of conditional empirical processes. J. multivariate. Anal. 26, 184-206 (1988) · Zbl 0655.62040
[10] Kaplan, E. L.; Meier, P.: Nonparametric estimation from incomplete observations. J. amer. Statist. assoc. 53, 457-481 (1958) · Zbl 0089.14801
[11] Lecoutre, J. P.; Ould-Saïd, E.: Estimation de la densité conditionnelle et de la fonction de hasard conditionnelle pour un processus fortement mélangeant avec censure. CR acad. Sci. Paris 314, 295-300 (1992) · Zbl 0755.62037
[12] Lecoutre, J. P.; Ould-Saïd, E.: Estimation de la fonction de hasard pour un processus fortement mélangeant avec censure. Pub. inst. Statist. univ. Paris, 59-69 (1993) · Zbl 0768.62028
[13] Shorack, G. R.; Wellner, J. A.: Empirical processes with applications to statistics. (1986) · Zbl 1170.62365
[14] Stute, W.: On almost sure convergence of conditional empirical distribution functions. Ann. probab. 14, 891-901 (1986) · Zbl 0593.60043
[15] Stute, W.: Conditional empirical processes. Ann. statist. 14, 638-647 (1986) · Zbl 0594.62038