zbMATH — the first resource for mathematics

A parallel iterative procedure applicable to the approximate solution of second order partial differential equations by mixed finite element methods. (English) Zbl 0813.65122
The objective of the paper is to discuss and analyze in details a parallelizable iterative procedure based on the decomposition of the domain into individual elements. This procedure can be applied directly to coercive elliptic problems and can be easily implemented on a parallel computer by assigning each subdomain to its own processor. It also provides a time-stepping procedure for implicit methods for parabolic and hyperbolic equations.

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65F10 Iterative numerical methods for linear systems
65Y05 Parallel numerical computation
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
Full Text: DOI EuDML
[1] Arnold, D.N., Brezzi, F. (1985): Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. R.A.I.R.O., Modélisation Math. Anal. Numér.19, 7-32 · Zbl 0567.65078
[2] Brezzi, F. (1974): On the existence, uniqueness and approximation of saddle point problems arising from Lagrangian multipliers. R.A.I.R.O., Anal. Numér.2, 129-151 · Zbl 0338.90047
[3] Brezzi, F., Douglas, Jr., J., Fortin, M., Marini, L.D. (1987): Efficient rectangular mixed finite elements in two and three space variables. R.A.I.R.O., Modélisation. Math. Anal. Numér.21, 581-604 · Zbl 0689.65065
[4] Brezzi, F., Douglas, Jr., J., Marini, L.D. (1985) Variable degree mixed methods for second order elliptic problems. Mat., Apl. Comput.4, 19-34 · Zbl 0592.65073
[5] Brezzi, F., Douglas, Jr., J., Marini, L.D. (1985): Two families of mixed finite elements for second order elliptic problems. Numer. Math.47, 217-235 · Zbl 0599.65072
[6] Brezzi, F., Douglas, Jr., J., Durán, R., Fortin, M. (1987): Mixed finite elements for second order elliptic problems in three variables. Numer. Math.51, 237-250 · Zbl 0631.65107
[7] Chen, Z., Douglas, Jr., J. (1989): Prismatic mixed finite elements for second order elliptic problems. Calcolo26, 135-148 · Zbl 0711.65089
[8] Cowsar, L.C., Wheeler, M.F. (1990): Parallel domain decomposition method for mixed finite elements for elliptic partial differential equations. In: R. Glowinski, Y. Kuznetsov, G. Meurant, J. Périaux, O. Widlund, eds., Proceedings of the Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations · Zbl 0770.65080
[9] Després, B. (1991): Méthodes de décomposition de domaines pour les problèmes de propagation d’ondes en régime harmonique. Thèse, Université Paris IX Dauphine, UER Mathématiques de la Décision
[10] Després, B.: Domain decomposition method and the Helmholz problem. Proceedings of the First International Conference on Mathematical and Numerical Aspects of Wave Propagation (to appear) · Zbl 0814.65113
[11] Després, B., Joly, P., Roberts, J.E. (1990): Domain decomposition method for harmonic Maxwell’s equations. Proceedings of the IMACS international symposium on iterative methods in linear algebra. Elsevier, North Holland
[12] Douglas, Jr., J. (1961): On incomplete iteration for implicit parabolic difference equations. J. Soc. Indust. Appl. Math.8, 433-439 · Zbl 0106.10801
[13] Douglas, Jr., J., Dupont, T., Percell, P. (1978): A time-stepping method for Galerkin approximations for nonlinear parabolic equations. In: Numerical analysis, Lecture Notes in Mathematics. Springer Berlin Heidelberg New York · Zbl 0381.65058
[14] Douglas, Jr., J., Dupont, T., Ewing, R.E. (1979): Incomplete iteration for time-stepping a nonlinear parabolic Galerkin method. SIAM J. Numer. Anal.16, 503-522 · Zbl 0411.65064
[15] Douglas, Jr., J., Roberts, J.E. (1985): Global estimates for mixed methods for second order elliptic problems. Math. Comput.45, 39-52 · Zbl 0624.65109
[16] Ewing, R.E., Wang, J.: Analysis of the Schwarz algorithm for mixed finite element methods. R.A.I.R.O., Modélisation Math. Anal. Numér. (to appear) · Zbl 0765.65104
[17] Ewing, R.E., Wang, J.: Analysis of multilevel decomposition iterative methods for mixed finite element methods. R.A.I.R.O., Modélisation. Math. Anal. Numér. (submitted) · Zbl 0823.65035
[18] Feng, X., Bennethum, L.: Private communication
[19] Fraeijs de Veubeke, B.X. (1965): Displacement and equilibrium models in the finite element method. In: O.C. Zienkiewicz, G. Holister, eds., Stress analysis. Wiley, New York · Zbl 0359.73007
[20] Fraeijs de Veubeke, B.X. (1975): Stress function approach. International Congress on the Finite Element Method in Structural Mechanics, Bournemouth · Zbl 0359.76021
[21] Glowinski, R., Kinton, W., Wheeler, M.F. (1990): Acceleration of domain decomposition algorithms for mixed finite elements by multi-level methods. In: R. Glowinski, ed., Third International Symposium on Domain Decomposition Methods for Partial Differential Equations. SIAM, Philadelphia, 263-290 · Zbl 0704.65081
[22] Glowinski, R., Wheeler, M.F. (1988): Domain decomposition and mixed finite element methods for elliptic problems. In: R. Glowinski, G. Golub, G. Meurant, J. Periaux, eds., Domain decomposition methods for partial differential equations. SIAM, Philadelphia, 144-172 · Zbl 0661.65105
[23] Kellogg, R.B., Osborn, J.E. (1976): A regularity result for the Stokes problem in a convex polygon. Funct. Anal. Appl.21, 397-431 · Zbl 0317.35037
[24] Nedelec, J.-C. (1980): Mixed finite elements inR 3 Numer. Math.35, 315-341 · Zbl 0419.65069
[25] Raviart, P.-A., Thomas, J.-M. (1977): A mixed finite element method for second order elliptic problems. In: Mathematical aspects of the finite element method. Lecture Notes in Mathematics 606. Springer Berlin Heidelberg New York, 292-315
[26] Thomas, J.-M. (1977): Sur l’analyse numérique des methodes d’éléments finis hybrides et mixtes. Thèse, Université Pierre-et-Marie Curie, Paris
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.