Topological and phenomenological classification of bursting oscillations. (English) Zbl 0813.92010

Summary: We describe a classification scheme for bursting oscillations which encompasses many of those found in the literature on bursting in excitable media. This is an extension of the scheme of J. Rinzel [Lect. Notes Biomath. 71, 267-281 (1987; Zbl 0646.92004)], put in the context of a sequence of horizontal cuts through a two-parameter bifurcation diagram. We use this to describe the phenomenological character of different types of bursting, addressing the issue of how well the bursting can be characterized given the limited amount of information often available in experimental settings.


92C30 Physiology (general)
92C20 Neural biology
92C05 Biophysics


Zbl 0646.92004


Full Text: DOI


[1] Alving, B. 1968. Spontaneous activity in isolated somata of Aplysia pacemaker neurons.J. Gen. Physiol. 51, 29–45.
[2] Ashcroft, F. and P. Rorsman. 1989. Electrophysiology of the pancreatic {\(\beta\)}-cell.Prog. Biophys. molec. Biol. 54, 87–143.
[3] Av-Ron, E., H. Parnas and L. Segel. 1993. A basic biophysical model for bursting neurons.Biol. Cybern. 69, 87–95.
[4] Baer, S. M., T. Erneux and J. Rinzel. 1989. The slow passage through a Hopf bifurcation: delay, memory effects, and resonance.SIAM J. Appl. Math. 49, 55–71. · Zbl 0683.34039
[5] Bertram, R. 1993. A computational study of the effects of serotonin on a molluscan burster neuron.Biol. Cybern. 69, 257–267. · Zbl 0775.92017
[6] Bertram, R. 1994. Reduced-system analysis of the effects of serotonin on a molluscan burster neuron.Biol. Cybern. 70, 359–368. · Zbl 0800.92071
[7] Canavier, C. C., J. W. Clark and J. H. Byrne. 1991. Simulation of the bursting activity of neuron R15 in Aplysia: role of ionic currents, calcium balance, and modulatory transmitters.J. Neurophysiol. 66, 2107–2124.
[8] Canavier, C. C., D. A. Baxter, J. W. Clark and J. H. Byrne. 1993. Nonlinear dynamics in a model neuron provide a novel mechanism for transient synaptic inputs to produce long-term alterations of postsynaptic activity.J. Neurophysiol. 69, 2252–2257.
[9] Chay, T. R. and D. L. Cook. 1988. Endogenous bursting patterns in excitable cells.Math. Biosci. 90, 139–153.
[10] Crunelli, V., J. S. Kelly, N. Leresche and M. Pirchio. 1987. The ventral and dorsal lateral geniculate nucleus of the rat: intracellular recordings in vitro.J. Physiol. 384, 587–601.
[11] Dean, P. M. and E. K. Matthews. 1970. Glucose-induced electrical activity in pancreatic islet cells.J. Physiol. 210, 255–264.
[12] Deschênes, M., J. P. Roy and M. Steriade. 1982. Thalamic bursting mechanism: an inward slow current revealed by membrane hyperpolarization.Brain Res. 239, 289–293.
[13] Doedel, E. 1981. Auto: A program for the automatic bifurcation analysis of autonomous systems.Cong. Num. 30, 265–284. · Zbl 0511.65064
[14] Dumortier, F., R. Roussarie and J. Sotomayor. 1991. Generic 3-parameter families of planar vector fields, unfoldings of saddle, focus and elliptic singularities with nilpotent linear parts. InBifurcations of Planar Vector Fields: Nilpotent Singularites and Abelian Integrals, F. Dumortier, R. Roussarie, J. Sotomayor and H. \.Zoladek (Eds), Lecture Notes in Mathematics, Vol. 1480, pp. 1–164. Berlin: Springer.
[15] Ermentrout, G. B. and N. Kopell. 1986. Parabolic bursting in an excitable system coupled with a slow oscillation.SIAM J. Appl. Math. 46, 233–253. · Zbl 0594.58033
[16] FitzHugh, R. 1961. Impulses and physiological states in theoretical models of nerve membrane.Biophys. J. 1, 445–466.
[17] Gear, C. 1967. The numerical integration of ordinary differential equations.Math. Comp. 21, 146–156. · Zbl 0155.20601
[18] Guckenheimer, J. 1986. Multiple bifurcation problems for chemical reactions.Physica 20D, 1–20. · Zbl 0593.34043
[19] Guckenheimer, J. and P. Holmes. 1983.Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, pp. 353–423. Berlin: Springer. · Zbl 0515.34001
[20] Guckenheimer, J., S. Gueron and R. M. Harris-Warrick. 1993. Mapping the dynamics of a bursting neuron.Phil. Trans. Roy. Soc. Lond. 341, 345–359.
[21] Harris-Warrick, R. M. and R. E. Flamm. 1987. Multiple mechanisms of bursting in a conditional bursting neuron.J. Neurosci. 7, 2113–2128.
[22] Hindmarsh, A. 1974. An ordinary differential equation solver. Technical report UCID-30001, Lawrence Livermore Laboratory.
[23] Hindmarsh, J. L. and R. M. Rose. 1984. A model of neuronal bursting using three coupled first order differential equations.Proc. R. Soc. Lond. B 221, 87–102.
[24] Hudson, J. L., M. Hart and D. Marinko. 1979. An experimental study of multiple peak periodic and nonperiodic oscillations in the Belousov-Zhabotinskii reaction.J. Chem. Phys. 71, 1601–1606.
[25] Johnson, S. W., V. Seutin and R. A. North. 1992. Burst firing in dopamine neurons induced by N-Methyl-D-Aspartate: role of electrogenic sodium pump.Science 258, 665–667.
[26] Pernarowski, M. 1994. Fast subsystem bifurcations in a slowly varying Liénard system exhibiting bursting.SIAM J. Appl. Math. 54, 814–832. · Zbl 0805.34035
[27] Plant, R. E. and M. Kim. 1976. Mathematical description of a bursting pacemaker neuron by a modification of the Hodgkin-Huxley equations.Biophys. J. 16, 227–244.
[28] Rinzel, J. 1985. Bursting oscillation in an excitable membrane model. InOrdinary and Partial Differential Equations, B. D. Sleeman and R. J. Jarvis (Eds), Lecture Notes in Mathematics, Vol. 1151, pp. 304–316. Berlin: Springer.
[29] Rinzel, J. 1987. A formal classification of bursting mechanisms in excitable systems. InMathematical Topics in Population Biology, Morphogenesis and Neurosciences, E. Teramoto and M. Yamaguti (Eds), Lecture Notes in Biomathematics, Vol. 71, pp. 267–281. Berlin: Springer.
[30] Rinzel, J. and Y. S. Lee. 1987. Dissection of a model for neuronal parabolic bursting.J. Math. Biol. 25, 653–675. · Zbl 0628.92016
[31] Rinzel, J. and W. C. Troy. 1982. Bursting phenomena in a simplified Oregonator flow system model.J. Chem. Phys. 76, 1775–1789.
[32] Rush, M. E. and J. Rinzel. 1994. Analysis of bursting in a thalamic neuron model.Biol. Cybern. 71, 281–291. · Zbl 0804.92008
[33] Schecter, S. 1987. The saddle node separatrix loop.SIAM J. Math. Anal. 18, 1142–1156. · Zbl 0651.58025
[34] Sherman, A. and J. Rinzel. 1992. Rhythmogenic effects of weak electrotonic coupling in neuronal models.Proc. Natl. Acad. Sci. USA 89, 2471–2474.
[35] Smolen, P. and J. Keizer. 1992. Slow voltage inactivation of Ca2+ currents and bursting mechanisms for the mouse pancreatic beta-cell.J. Membrane. Biol. 127, 9–19.
[36] Smolen, P. and A. Sherman. 1994. Phase-independent resetting in relaxation and bursting oscillators.J. Theor. Biol. 169, 339–348.
[37] Strumwasser, F. 1967. Types of information stored in single neurons. InInvertebrate Nervous Systems: Their Significance for Mammalian Neurophysiology, C. A. G. Wiersma (Ed.), pp. 290–319. Chicago: The University of Chicago Press.
[38] Traub, R. D., R. K. S. Wong, R. Miles and H. Michelson. 1991. A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances.J. Neurophysiol. 66, 635–650.
[39] Wang, X.-J. and J. Rinzel. 1994. Oscillatory and bursting properties of neurons. InThe Handbook of Brain Theory and Neural Networks, M. A. Arbib (Ed.). Cambridge, MA: The MIT Press.
[40] Wang, X.-J., J. Rinzel and M. A. Rogawski. 1991. A model of the T-type calcium current and the low-threshold spikes in the thalamic neurons.J. Neurophysiol. 66, 839–850.
[41] Wong, R. K. S. and D. A. Prince. 1981. Afterpotential generation in hippocampal pyramidal cells.J. Neurophysiol. 45, 86–97.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.