zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Computing on-line the lattice of maximal antichains of posets. (English) Zbl 0814.06004
Summary: We consider the on-line computation of the lattice of maximal antichains of a finite poset $\widetilde{P}$. This on-line computation satisfies what we call the “linear extension hypothesis”: the new incoming vertex is always maximal in the current subposet of $\widetilde{P}$. In addition to its theoretical interest, this abstraction of the lattice of antichains of a poset has structural properties which give it interesting practical behavior. In particular, the lattice of maximal antichains may be useful for testing distributed computations, for which purpose the lattice of antichains is already widely used. Our on-line algorithm has a run time complexity of ${\cal O}((\vert P\vert + \omega\sp 2(P)) \omega(P)\vert MA(P)\vert)$, where $\vert P\vert$ is the number of elements of the poset $\widetilde{P}$, $\vert MA(P)\vert$ is the number of maximal antichains of $\widetilde{P}$ and $\omega(P)$ is the width of $\widetilde{P}$. This is more efficient than the best off-line algorithms known so far.

06A06Partial order
68Q25Analysis of algorithms and problem complexity
Full Text: DOI
[1] Babaoglu, O. and Raynal, M. (1993)Sequence-Based Global Predicates for Distributed Computations: Definitions and Detection Algorithms, IRISA research report No. 729, May 1993.
[2] Birkhoff, G. (1937) Rings of sets,Duke Math. J-3, 311--316. · doi:10.1215/S0012-7094-37-00323-5
[3] Behrendt, G. (1988) Maximal antichains in partially ordered sets,ARS Combinatoria 25C, 149--157. · Zbl 0657.06003
[4] Bonnet, R. and Pouzet, M. (1969) Extensions et stratifications d’ensembles dispersés, C.R.A.S. Paris, t. 268, Série A, 1512--1515. · Zbl 0188.04203
[5] Bordat, J. P. (1986) Calcul pratique du treillis de Galois d’une correspondance,Math. Sci. Hum. 96, 31--47. · Zbl 0626.06007
[6] Charron-Bost, B., Delporte-Gallet, C. and Fauconnier, H. (1992) Local and temporal predicates in distributed systems,Research Report No. 92-36, LITP, Paris 7.
[7] Cooper, R. and Marzullo, K. (1991) Consistent detection of global predicates, in:Proc. ACM/ONR Workshop on Parallel and Distributed Debugging, pp. 163--173, Santa Cruz, California.
[8] Diehl, C., Jard, C. and Rampon, J. X. (1993) Reachablity analysis on distributed executions, TAPSOFT’93: Theory and Practice of Software Development, in Lecture Notes in Computer Science No. 668, Springer-Verlag, pp. 629--643.
[9] Fidge, C. (1988) Timestamps in message passing systems that preserve the partial ordering, in:Proc. 11th Australian Computer Science Conference, pp. 55--66.
[10] Ganter, B. and Reuter, K. (1991) Finding all Closed sets: A general approach,Order 8, 283--290. · Zbl 0754.06003 · doi:10.1007/BF00383449
[11] Habib, M., Morvan, M., Pouzet, M. and Rampon, J. X. (1992) Incidence, structures, coding and lattice of maximal antichains, Research Report No. 92-079, LIRMM Montpellier.
[12] Irani, S. (1990) Coloring inductive graphs on-line,IEEE 31nd Symposium on Foundations of Computer Science pp. 470--479.
[13] Jard, C., Jourdan, G. V. and Rampon, J. X. (1993) Some ”On-line” computations of the ideal lattice of posets,IRISA Research Report No. 773. · Zbl 0833.68055
[14] Lamport, L. (1978) Time, clocks and the ordering of events in a distributed system,Communications of the ACM 21(7), 558--565. · Zbl 0378.68027 · doi:10.1145/359545.359563
[15] MacNeille, H. M. (1937) Partially ordered sets,Transactions of the American Mathematical Society 42, 416--460. · Zbl 0017.33904 · doi:10.1090/S0002-9947-1937-1501929-X
[16] Markowsky, G. (1975) The factorization and representation of lattices,Transactions of the American Mathematical Society 203, 185--200. · Zbl 0302.06011 · doi:10.1090/S0002-9947-1975-0360386-3
[17] Markowsky, G. (1992) Primes, irreducibles and extremal lattices,Order 9, 265--290. · Zbl 0778.06007 · doi:10.1007/BF00383950
[18] Mattern, F. (1989) Virtual time and global states of distributed systems, in: Cosnard, Quinton, Raynal and Robert, (eds.),Proc. Int. Workshop on Parallel Distributed Algorithms, Bonas France, North-Holland. · Zbl 0709.68611
[19] Morvan, M. and Nourine, L. (1992) Generating minimal interval extensions, R.R. No. 92-015, LIRMM Montpellier.
[20] Reuter, K. (1991) The jump number and the lattice of maximal antichains,Discrete Mathematics 88, 289--307. · Zbl 0731.06003 · doi:10.1016/0012-365X(91)90016-U
[21] Westbrook, J. and Yan, D. C. K. (1993) Greedy Algorithms for the On-Line Steiner Tree and Generalized Steiner Problems, WADS’93:Algorithms and Data Structures, Lecture Notes in Computer Science No. 709, Springer-Verlag, pp. 622--633.
[22] Wille, R. (1982) Restructuring lattice theory: an approach based on hierarchies of concepts, in: I. Rival (ed.),Ordered Sets, Reidel, Dordrecht, pp. 445--470. · Zbl 0491.06008
[23] Wille, R. (1985) Finite distributive lattices as concept lattices,Atti. Inc. Logica Mathematica (Siena)2, 635--648. · Zbl 0577.06012