zbMATH — the first resource for mathematics

Orlicz spaces, spline systems, and Brownian motion. (English) Zbl 0814.46022
Summary: There are three results proved in this paper. The first one characterizes the Hölder classes in Orlicz spaces by the coefficients of the orthogonal spline expansions of the Franklin type. The second one gives a sharp estimate for the correlation of two random variables obtained as a composition of two Borel functions with the components of a given two- dimensional Gaussian vector. The third one is obtained with the help of the first two and it states that the Wiener measure is concentrated on the Banach space of Hölder functions with exponent \({1\over 2}\) but in the norm of the Orlicz space \(L^*_ M\) with \(M(t)= \exp(t^ 2)- 1\).

46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
60J65 Brownian motion
42C10 Fourier series in special orthogonal functions (Legendre polynomials, Walsh functions, etc.)
28C20 Set functions and measures and integrals in infinite-dimensional spaces (Wiener measure, Gaussian measure, etc.)
60E15 Inequalities; stochastic orderings
41A15 Spline approximation
62J10 Analysis of variance and covariance (ANOVA)
PDF BibTeX Cite
Full Text: DOI
[1] C. Boor De (1981):On a max-norm bounded for the least-squares spline approximation. In: Approximation and Function Spaces. (Proc. International Conference, Gda?sk, August, 27-31, 1979) (Z. Ciesielski, ed.). Warsaw: PWN; Amsterdam: North-Holland, pp. 163-175.
[2] Z. Ciesielski (1963):Properties of the orthnormal, Franklin system. Studia Math.,23:141-157. · Zbl 0113.27204
[3] Z. Ciesielski (1966):Properties of the orthonormal Franklin system, II. Studia Math.,27:290-323. · Zbl 0148.04702
[4] Z. Ciesielski (1975):Constructive function theory and spline systems. Studia Math.,53:277-302. · Zbl 0273.41010
[5] Z. Ciesielski (1985):Haar orthogonal functions in analysis and probability. In: Colloquia Mathematica Societatis János Bolyai, vol. 49 (Proc. Alfred Haar Memorial Conference, Budapest). Amsterdam: North-Holland, pp. 25-56.
[6] Z. Ciesielski (1991):Modulus of Smoothness of the Brownian Paths in the L p Norm. Proc. Conf. Approximation Theory, Varna, Bulgaria.
[7] Z. Ciesielski, J. Domsta (1972):Construction of an orthonormal basis in C m(Id) and W p m (Id). Studia Math.,41:211-224. · Zbl 0235.46047
[8] Z. Ciesielski, J. Domsta (1972):Estimates for the spline orthonormal functions and for their derivatives. Studia Math.,44:315-320. · Zbl 0215.46901
[9] X. Fernique (1970):Intégrabilité des vecteurs gaussiens. C. R. Acad. Sci. Paris Sér. A-B,270:A1698-B1699. · Zbl 0206.19002
[10] W. B. Johnson, G. Schechtman, J. Zinn (1985):Best constants in moment inequalities for linear combinations of independent and exchangeable random variables. Ann. Probab.,13:234-253. · Zbl 0564.60020
[11] M. A. Kracnoselskii, Ya. B. Rutitskii (1958): Convex Functions and Orlicz, Spaces. Moscow: State Publ. Phys.-Math. Literature.
[12] P. Levy (1954): Le Mouvement Brownien. Paris: Gauthier-Villars.
[13] J. Lindenstrauss, L. Tzafriri (1979): Classical Banach, Spaces, II. Berlin: Springer-Verlag.
[14] S. Mazur (1929):Une remarque sur l’homéomorphie des champs fonctionels. Studia Math.,1:83-85. · JFM 55.0242.01
[15] N. Wiener (1930):Generalized harmonic analysis. Acta Math.,55:117-258. · JFM 56.0954.02
[16] N. Wiener (1933): Fourier Integral and Certain of Its Applications. Cambridge: Cambridge University Press. · Zbl 0006.05401
[17] Wu Garidi (1991):On approximation by polynomials in Orlicz spaces. J. Approx. Theory and Its Appl.,7(3):97-110. · Zbl 0761.41046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.