Turtoi, Irina Ana Prolongation of spinor structures on the manifold of jets. (Prolongement des structures spinorielles sur la variété des jets.) (French) Zbl 0814.53029 Ann. Inst. Henri Poincaré, Phys. Théor. 61, No. 1, 63-73 (1994). The author proves that it is possible to construct, in a canonical way, a spinorial structure on the manifold of 1-jets of a differentiable manifold with a spinorial structure. An example of prolongation of a spin structure on \(R^ 2\) to the manifold of 1-jets \(J^ 1_ qR^ 2\) is given. Reviewer: L.A.Cordero (Santiago de Compostela) MSC: 53C15 General geometric structures on manifolds (almost complex, almost product structures, etc.) 58A20 Jets in global analysis Keywords:spinorial structure; manifold of 1-jets PDF BibTeX XML Cite \textit{I. A. Turtoi}, Ann. Inst. Henri Poincaré, Phys. Théor. 61, No. 1, 63--73 (1994; Zbl 0814.53029) Full Text: Numdam EuDML OpenURL References: [1] M. Atiyah , R. Bott et A. Shapiro , Clifford Moduls, Topology , vol. 3 , Suppl. 1, 1964 , p. 3 - 38 . MR 167985 | Zbl 0146.19001 · Zbl 0146.19001 [2] L.A. Cordero , C.T.J. Dodson et M. De Leon , Differential Geometry of Frame Bundles , Kluwer Academic Publishers , Dordrecht , Boston , London , 1988 . Zbl 0673.53001 · Zbl 0673.53001 [3] A. Crumeyrolle , Structures spinorielles , Ann. Inst. H. Poincaré , vol. 11 , 1 , 1969 , p. 19 - 25 . Numdam | MR 271856 | Zbl 0188.26102 · Zbl 0188.26102 [4] A. Crumeyrolle , Groupes de spinorialité , Ann. Inst. H. Poincaré , vol. 14 , 4 , 1971 , p. 309 - 323 . Numdam | MR 300213 | Zbl 0221.53046 · Zbl 0221.53046 [5] S. Kobayashy et K. Nomizu , Fundations of Differential Geometry , Interscience Publishers , New York , London , 1963 . Zbl 0119.37502 · Zbl 0119.37502 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.