# zbMATH — the first resource for mathematics

Finite beta-expansions. (English) Zbl 0814.68065
Let $$\beta>1$$ be a real number and for a real number $$x$$, $$[x]$$ be its integer part, $$\{x\}$$ be its fractional part. There exists $$k \in \mathbb{Z}$$ such that $$\beta^ k \leq x < \beta^{k+1}$$. Let $$x_ k = [x/ \beta^ k]$$, and $$r_ k = \{x/ \beta^ k\}$$. Then for $$k > i \geq - \infty$$, put $$x_ i = [\beta r_{i+1}]$$, and $$r_ i = \{\beta r_{i+1}\}$$. We get a $$\beta$$-expansion $$x = x_ k \beta^ k + x_{k-1} \beta^{k-1} + \cdots$$. If $$k < 0(x < 1)$$, we put $$x_ 0 = x_{-1} = \cdots + x_{k+1} = 0$$ (the ‘greedy algorithm’). If an expansion ends in infinitely many zeros, it is said to be finite. On the other hand, A. Rényi defined a $$\beta$$-expansion by means of the $$\beta$$- transformation of the unit interval $$T_ \beta x = \beta x \pmod 1$$, $$x \in[0,1]$$. For numbers $$x < 1$$, these two expansions coincides. For $$x = 1$$, the Rényi expansion is $d(1, \beta) = .t_ 1t_ 2 \dots, t_ k = \bigl[ \beta T^{k-1}_ \beta 1 \bigr].$ Let $$D_ \beta$$ be the set of $$\beta$$-expansions of numbers of $$[0,1[$$, and let $$d : [0,1] \to D_ \beta \cup \{d(1,\beta)\}$$ be the function mapping $$x \neq 1$$ onto its $$\beta$$-expansion, and 1 onto $$d(1,\beta)$$. Let $$Fin (\beta)$$ be the set of numbers $$x > 0$$ having finite $$\beta$$-expansions. An algebraic integer is called a Pisot number if all its Galois conjugates have modulus less than one, and a Salem number if all its Galois conjugates are less than or equal to one in modulus and at least one conjugate has modulus one. The main results of the paper are theorems giving sufficient conditions for the inclusion $$\mathbb{Z}_ + [\beta^{-1}] \cap \mathbb{R}_ + \subset Fin (\beta)$$. Theorem 2. Let $$\beta$$ be the positive root of the polynomial $M(X) = X^ m - a_ 1X^{m-1} - a_ 2X^{m-2} - \cdots - a_ m, \quad a_ i \in \mathbb{Z},\;a_ 1 \geq a_ 2 \geq \cdots \geq a_ m > 0.$ Then $$\beta$$ is a Pisot number, $$d(1, \beta) = .a_ 1a_ 2 \cdots a_ m$$, and $$Fin (\beta) = (\mathbb{Z} [\beta^{-1}])_ + = \mathbb{Z} [\beta^{-1}] \cap \mathbb{R}_ +$$. Theorem 3. Let $$\beta > 1$$ be a real number such that $$d(1,\beta) = .t_ 1t_ 2 \dots t_ m (t_{m+1})^ \omega$$, with $$t_ 1 \geq t_ 2 \geq \cdots t_ m > t_{m+1} > 0$$. Then $$\beta$$ is a Pisot number and $$\mathbb{Z}_ + [\beta^{-1} \subset Fin (\beta)$$. Finally an application to substitution dynamical systems is given.
Reviewer: Y.Asoo (Okayama)

##### MSC:
 68W10 Parallel algorithms in computer science
##### Keywords:
Pisot number; Salem number
Full Text:
##### References:
  Brauer, Math. Nachr. 4 pp 250– (1951) · Zbl 0042.01501  Boyd, Number Theory pp 57– (1989)  DOI: 10.1016/0304-3975(89)90038-8 · Zbl 0682.68081  Bertrand, C.R. Acad. Sci. 285 pp 419– (1977)  Seneta, Non-negative Matrices. An Introduction to Theory and Applications (1973)  Salem, Algebraic Numbers and Fourier Analysis (1963) · Zbl 0126.07802  DOI: 10.2307/2322638 · Zbl 0568.10005  DOI: 10.1007/BF02020331 · Zbl 0079.08901  Queffélec, Substitution dynamical systems?spectral analysis 1294 pp none– (1987) · Zbl 0642.28013  DOI: 10.1007/BF02020954 · Zbl 0099.28103  DOI: 10.1016/0022-314X(89)90011-5 · Zbl 0676.10010  DOI: 10.1007/BFb0023826  DOI: 10.1007/BF01368783 · Zbl 0776.11005  DOI: 10.1112/blms/12.4.269 · Zbl 0494.10040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.