Conformal blocks and generalized theta functions. (English) Zbl 0815.14015

Let \(SU_ X (r)\) be the moduli space of semistable rank-\(r\) vector bundles over a compact Riemann surface \(X\) of genus \(g\), whose determinant bundle is trivial. There is a natural polarizing line bundle \(L\) over \(SU_ X (r)\), the so-called generalized theta bundle. The \(\mathbb{C}\)-vector space of sections of \(L^{\otimes k}\), \(k \in \mathbb{N}\), is called the space of generalized theta functions of order \(k\) on \(SU_ X (r)\), and its dimension may be computed by the famous Verlinde formula.
The Verlinde formula was first discovered by physicists, in the context of conformal quantum field theory [cf. E. Verlinde, “Fusion rules and modular transformations in \(2d\) conformal field theory”, Nucl. Phys. B 300, No. 3, 360-376 (1988)], served then as a conjectural problem (even for more general semistable vector bundles on curves) in algebraic geometry for some years, and was recently affirmatively established, partly in special cases, by several authors [A. Bertram – A. Szenes (1991), M. Thaddeus (1992), G. Faltings (1993)].
The aim of the present paper is to give a proof of the Verlinde formula, in the case mentioned above, by explicitly relating the constructions and arguments of the physicists to computing \(H^ 0 (SU_ X(r), L^{\otimes k})\). This is done by establishing a canonical isomorphism between this space and the so-called space of conformal blocks of level \(k\), denoted by \(B_ k (r)\), which naturally arises in the representation theory of Kac-Moody algebras and their applications in conformal quantum field theory. Having constructed this canonical isomorphism in a mathematically rigorous way, the authors derive the Verlinde formula from the dimension formula for \(B_ k (r)\), which has been computed, in a purely combinatorial manner, by A. Tsuchiya, K. Ueno and Y. Yamada [in Integrable systems in quantum field theory and statistical mechanics, Proc. Sympos. 1988, Adv. Stud. Pure Math. 19, 459-566 (1989; Zbl 0696.17010)], and also by D. Gepner [Commun. Math. Phys. 141, 381-411 (1991; Zbl 0752.17033)].
At the end of the paper, the results are generalized to the case of semistable vector bundles of arbitrary degree and determinant \({\mathcal O}_ X (dp)\), \(d\) being a fixed integer and \(p \in X\).


14H42 Theta functions and curves; Schottky problem
14H60 Vector bundles on curves and their moduli
81T20 Quantum field theory on curved space or space-time backgrounds
14K25 Theta functions and abelian varieties
17B67 Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras
14H55 Riemann surfaces; Weierstrass points; gap sequences
Full Text: DOI arXiv


[1] [A-D-K] Arbarello, E., De Concini, C., Kac, V.: The infinite wedge representation and the reciprocity law for algebraic curves. Proc. of Symp. in Pure Math.49, 171–190 (1989) · Zbl 0699.22028
[2] [B] Bourbaki, N.: Algèbre commutative, ch. 5 to 7. Paris: Masson 1985 · Zbl 0547.13002
[3] [D-M] Deligne, P., Mumford, D.: The irreducibility of the space of curves of given genus. Publ. Math. IHES36, 75–110 (1969) · Zbl 0181.48803
[4] [D-N] Drezet, J.M., Narasimhan, M.S.: Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques. Invent. Math.97, 53–94 (1989) · Zbl 0689.14012
[5] [F] Faltings, G.: A proof for the Verlinde formula. J. Alg. Geom., to appear · Zbl 0809.14009
[6] [G] Gepner, D.: Fusion rings and geometry. Commun. Math. Phys.141, 381–411 (1991) · Zbl 0752.17033
[7] [K] Kac, V.: Infinite dimensional Lie algebras. Progress. in Math.44, Boston: Birkhäuser 1983 · Zbl 0537.17001
[8] [Ku] Kumar, S.: Demazure character formula in arbitrary Kac-Moody setting. Invent. Math.89, 395–423 (1987) · Zbl 0635.14023
[9] [K-N-R] Kumar, S., Narasimhan, M.S., Ramanathan, A.: Infinite Grassmannian and moduli space ofG-bundles. Preprint (1993)
[10] [L] Laumon, G.: Un analogue global du cône nilpotent. Duke Math. J.57, 647–671 (1988) · Zbl 0688.14023
[11] [L-MB] Laumon, G., Moret-Bailly, L.: Champs algébriques. Prépublication Université Paris-Sud (1992)
[12] [M] Mathieu, O.: Formules de caractères pour les algèbres de Kac-Moody générales. Astérisque159–160 (1988)
[13] [P-S] Peskine, C., Szpiro, L.: Dimension projective finie et cohomologie locale. Publ. Math. IHES42, 47–119 (1973) · Zbl 0268.13008
[14] [SGA4 1/2] Cohomologie étale. Séminaire de Géométrie algébrique SGA4 1/2, par Deligne, P. Lecture Notes569. Berlin, Heidelberg, New York: Springer 1977
[15] [SGA6] Théorie des intersections et théorème de Riemann-Roch. Séminaire de Géométrie algébrique SGA 6, dirigé par Berthelot, P., Grothendieck, A., Illusie, L. Lecture Notes225. Berlin, Heidelberg, New York: Springer 1971
[16] [S1] Slodowy, P.: On the geometry of Schubert varieties attached to Kac-Moody Lie algebras. Can. Math. Soc. Conf. Proc.6, 405–442 (1984)
[17] [S-W] Segal, G., Wilson, G.: Loop groups and equations of KdV type. Publ. Math. IHES61, 5–65 (1985) · Zbl 0592.35112
[18] [T] Tate, J.: Residues of differentials on curves. Ann. Scient. Éc. Norm. Sup.1 (4ème série). 149–159 (1968) · Zbl 0159.22702
[19] [Tu] Tu, L.: Semistable bundles over an elliptic curve. Adv. in Math.98, 1–26 (1993) · Zbl 0786.14021
[20] [T-U-Y] Tsuchiya, A., Ueno, K., Yamada, Y.: Conformal field theory on universal family of stable curves with gauge symmetries. Adv. Studies in Pure Math.19, 459–566 (1989) · Zbl 0696.17010
[21] [V] Verlinde, E.: Fusion rules and modular transformations in 2d conformal field theory. Nucl. Phys. B300, 360–376 (1988) · Zbl 1180.81120
[22] [W] Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys.121, 351–399 (1986) · Zbl 0667.57005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.