Chemla, Sophie Duality property in coinduced representations of Lie superalgebras. (Propriété de dualité dans les représentations coinduites de superalgèbres de Lie.) (French) Zbl 0815.17022 Ann. Inst. Fourier 44, No. 4, 1067-1090 (1994). Summary: We give a new proof of a duality theorem about coinduced representations proved by M. Duflo [Invent. Math. 67, 385-393 (1982; Zbl 0501.17006)] in the case of finite dimensional Lie algebras and generalized by the author in Math. Ann. 297, No. 2, 371-382 (1993; Zbl 0788.17021). Our proof involves the algebra of differential operators as well as Bernstein’s correspondence between left and right \(D\)-modules. We also give an interpretation of the result in terms of induced representations of Lie supergroups. Our proof holds over a field of characteristic 0. Cited in 1 ReviewCited in 4 Documents MSC: 17B70 Graded Lie (super)algebras 17A70 Superalgebras 17B25 Exceptional (super)algebras Keywords:duality theorem; coinduced representations; finite-dimensional Lie algebras; algebra of differential operators; \(D\)-modules; induced representations of Lie supergroups Citations:Zbl 0501.17006; Zbl 0788.17021 PDF BibTeX XML Cite \textit{S. Chemla}, Ann. Inst. Fourier 44, No. 4, 1067--1090 (1994; Zbl 0815.17022) Full Text: DOI Numdam EuDML OpenURL References: [1] [Bla] , Induced and produced representations of Lie algebras, Trans. Amer. Math. Soc., 144 (1969), 457-474. · Zbl 0295.17002 [2] [BB] , , Differential operators on homogeneous spaces I, Invent. Math., 69 (1982), 437-476. · Zbl 0504.22015 [3] [C] , Cohomologie locale de Grothendieck et représentations induites de superalgèbres de Lie, Mathematische Annalen, 297 (1993), 371-382. · Zbl 0788.17021 [4] [Du] , Sur les idéaux induits dans les algèbres enveloppantes, Invent. Math., 67 (1982), 385-393. · Zbl 0501.17006 [5] [Fe] , Global dimension of rings of differential operators, Trans. Moscow. Math. Soc., 1 (1982), 123-147. · Zbl 0484.13020 [6] [K] , Graded manifolds, graded Lie theory and prequantization, Lecture Notes in Math. n° 570, Springer-Verlag, 1975. · Zbl 0358.53024 [7] [L] , Introduction to the theory of supermanifolds, Uspeki Mat. Nauk, 35, 1 (1980). · Zbl 0462.58002 [8] [Le] , Critères d’induction et de coinduction pour certains anneaux d’opérateurs différentiels, J. Algebra, 110, n° 2 (1987), 530-562. · Zbl 0629.16003 [9] [Ma] , Gauge field theory and complex geometry. A Series of Comprehensive Studies in Mathematics, Springer-Verlag, 1988. [10] [Ri] , Differential forms on general commutative algebras, Trans. Amer. Math. Soc., 108 (1963), 195-222. · Zbl 0113.26204 [11] [Sch] , The theory of Lie superalgebras, Lecture Notes in Math., n° 716, Springer-Verlag, 1979. · Zbl 0407.17001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.