zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Estimation of regression coefficients when some regressors are not always observed. (English) Zbl 0815.62043
Summary: In applied problems it is common to specify a model for the conditional mean of a response given a set of regressors. A subset of the regressors may be missing for some study subjects either by design or happenstance. We propose a new class of semiparametric estimators, based on inverse probability weighted estimating equations, that are consistent for the parameter vector $\alpha\sb 0$ of the conditional mean model when the data are missing at random in the sense of {\it D. B. Rubin} [Biometrika 63, 581-592 (1976; Zbl 0344.62034)] and the missingness probabilities are either known or can be parametrically modeled. We show that the asymptotic variance of the optimal estimator in our class attains the semiparametric variance bound for the model by first showing that our estimation problem is a special case of the general problem of parameter estimation in an arbitrary semiparametric model in which the data are missing at random and the probability of observing complete data is bounded away from 0, and then deriving a representation for the efficient score, the semiparametric variance bound and the influence function of any regular, asymptotically linear estimator in this more general estimation problem. Because the optimal estimator depends on the unknown probability law generating the data, we propose locally and globally adaptive semiparametric efficient estimators. We compare estimators in our class with previously proposed estimators. We show that each previous estimator is asymptotically equivalent to some, usually inefficient, estimator in our class. This equivalence is a consequence of a proposition stating that every regular asymptotic linear estimator of $\alpha\sb 0$ is asymptotically equivalent to some estimator in our class. We compare various estimators in a small simulation study and offer some practical recommendations.

62J05Linear regression
62J02General nonlinear regression
62G07Density estimation
Full Text: DOI