×

zbMATH — the first resource for mathematics

Generalized second-order derivatives and optimality conditions. (English) Zbl 0816.49008
This paper is written in the same spirit as the work of R. Cominetti and R. Correa [SIAM J. Control Optimization 28, No. 4, 789-809 (1990; Zbl 0714.49020)], except that now the concept of generalized second-order directional derivative is a little bit different. The author derives a chain rule and a generalized Taylor expansion for functions belonging to the class \(C^{1,1}\). This new concept of second-order derivative is also used to establish necessary and/or sufficient optimality conditions for \(C^{1,1}\) optimization problems with or without constraints.
Reviewer: A.Seeger (Dhahran)

MSC:
49J52 Nonsmooth analysis
49K27 Optimality conditions for problems in abstract spaces
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Fiacco, A.V.; McCormick, G.P., Nonlinear programming: sequential unconstrained minimization techniques, (1968), John Wiley New York · Zbl 0193.18805
[2] Han, S.-P.; Mangasarian, O.L., Exact penalty functions in nonlinear programming, Math. program., 17, 251-269, (1979) · Zbl 0424.90057
[3] Hestenes, M.R., Optimization theory: the finite dimensional case, (1975), John Wiley New York · Zbl 0327.90015
[4] McCormick, G.P., Second-order conditions for constrained minima, SIAM J. appl. math., 15, 641-652, (1967) · Zbl 0166.15601
[5] Burke, J.V., Second-order necessary and sufficient conditions for convex composite NDO, Math. program., 38, 218-302, (1987) · Zbl 0641.49013
[6] Burke, J.V.; Poliquin, R.A., Optimality conditions for non-finite valued convex composite functions, Math. program., 57, 103-120, (1992) · Zbl 0777.90055
[7] Fletcher, R., Practical methods of optimization, (1987), John Wiley New York · Zbl 0905.65002
[8] Ioffe, A.D., Necessary and sufficient conditions for a local minimum, 3: second-order conditions and augmented duality, SIAM J. control optim., 17, 266-288, (1979) · Zbl 0417.49029
[9] Ioffe, A., Variational analysis of a composite function: a formula for the lower second-order epi-derivative, J. math. analysis applic., 160, 379-405, (1991) · Zbl 0778.49021
[10] Rockafellar, R.T., First- and second-order epi-differentiability in nonlinear programming, Trans. am. math. soc., 307, 75-108, (1988) · Zbl 0655.49010
[11] Rockafellar, R.T., Second-order optimality conditions in nonlinear programming obtained by way of epi-derivatives, Math. oper. res., 14, 462-484, (1989) · Zbl 0698.90070
[12] Rockafellar, R.T., Solving a nonlinear programming problem by way of a dual problem, Symposia Mathematica, 19, 135-160, (1976)
[13] Zangwill, W.I., Nonlinear programming, (1969), Prentice-Hall Englewood Cliffs, New Jersey · Zbl 0191.49101
[14] Cominetti, R.; Correa, R., A generalized second-order derivative in nonsmooth optimization, SIAM J. control optim., 28, 789-809, (1990) · Zbl 0714.49020
[15] Hiriart-Urruty, J.B.; Strodiot, J.J.; Hien Nguyen, V., Generalized Hessian matrix and second-order optimality conditions for problems with C1,1 data, Appl. math. optim., 11, 43-56, (1984) · Zbl 0542.49011
[16] Qi, L., LC1 functions and LC1 optimization problems, (), AM 91/21
[17] Yang, X.Q.; Jeyakumar, V., Generalized second-order directional derivatives and optimization with C1,1 functions, Optimization, 26, 165-185, (1991) · Zbl 0814.49012
[18] Hiriart-Urruty, J.B., Characterizations of the plenary hull of the generalized Jacobian matrix, Math. prog. study, 17, 1-12, (1982) · Zbl 0532.26007
[19] Michel, P.; Penot, J.P., Second-order moderate derivatives, Nonlinear analysis, 22, 7, 809-824, (1994) · Zbl 0810.49017
[20] Clarke, F.H., Optimization and nonsmooth analysis, (1983), John Wiley New York · Zbl 0727.90045
[21] Michel, P.; Penot, J.P., Calcul sous-différential pour des fonctions lipschitziennes et non lipschitziennes, C.r. acad. sci. Paris, 298, 269-272, (1984) · Zbl 0567.49008
[22] Ioffe, A.D., Nonsmooth analysis: differential calculus of nondifferentiable mappings, Trans. am. math. soc., 266, 1-56, (1981) · Zbl 0651.58007
[23] Aubin, J.P.; Ekeland, I., Applied nonlinear analysis, (1984), John Wiley New York
[24] Michel, P.; Penot, J.P., A generalized derivative for calm and stable functions, Diff. integral eqns, 5, 433-454, (1992) · Zbl 0787.49007
[25] Jeyakumar, V., Composite nonsmooth programming with Gâteaux differentiability, SIAM J. optim., 1, 30-41, (1991) · Zbl 0752.90067
[26] Studniarski, M., Mean value theorems and sufficient optimality conditions, J. math. analysis applic., 111, 313-326, (1985) · Zbl 0594.49019
[27] Ioffe, A.D., Necessary and sufficient conditions for a local minimum, 1: a reduction theorem and first order conditions, SIAM J. control optim., 17, 245-250, (1979) · Zbl 0417.49027
[28] Burke, J.V., An exact penalization viewpoint of constrained optimization, SIAM J. control optim., 29, 968-998, (1991) · Zbl 0737.90060
[29] Auslender, A., Penalty methods for computing points that satisfy second-order necessary conditions, Math. program., 17, 229-238, (1979) · Zbl 0497.90061
[30] Asplund, E., Differentiability of the metric projection in finite dimensional Euclidean space, Proc. am. math. soc., 38, 218-219, (1973) · Zbl 0269.52002
[31] Holmes, R.B., A course on optimization and best approximation, (1972), Springer New York · Zbl 0234.46016
[32] Hiriart-urruty, J.B.; Ponstein, J., Generalized differentiability, duality and optimization for problems dealing with difference of convex functions, Convexity and duality in optimization, Lecture notes in economics and mathematics systems, Vol. 256, 37-70, (1984)
[33] Mangasarian, O.L., Some applications of penalty functions in mathematical programming, (), 307-329 · Zbl 0597.90071
[34] Ben-tal, A.; Zowe, J., Necessary and sufficient optimality conditions for a class of nonsmooth minimization problems, Math. program., 24, 70-91, (1982) · Zbl 0488.90059
[35] Thibault, L., On generalized differentials and subdifferentials of Lipschitz vector-valued functions, Nonlinear analysis, 6, 1037-1053, (1982) · Zbl 0492.46036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.