zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The asymptotic variance of semiparametric estimators. (English) Zbl 0816.62034
Summary: The purpose of this paper is the presentation of a general formula for the asymptotic variance of a semiparametric estimator. A particularly important feature of this formula is a way of accounting for the presence of nonparametric estimates of nuisance functions. The general form of an adjustment factor for nonparametric estimates is derived and analyzed. The usefulness of the formula is illustrated by deriving propositions on invariance of the limiting distribution with respect to the nonparametric estimator, conditions for nonparametric estimation to have no effect on the asymptotic distribution, and the form of a correction term for the presence of nonparametric projection and density estimators. Examples discussed are quasi-maximum likelihood estimation of index models, panel probit with semiparametric individual effects, average derivatives, and inverse density weighted least squares. The paper also develops a set of regularity conditions for the validity of the asymptotic variance formula. Primitive regularity conditions are derived for $\sqrt{n}$-consistency and asymptotic normality for functions of series estimators of projections. Specific examples are polynomial estimators of average derivative and semiparametric panel probit models.

MSC:
62G07Density estimation
62G20Nonparametric asymptotic efficiency
WorldCat.org
Full Text: DOI