×

A quadratic field which is Euclidean but not norm-Euclidean. (English) Zbl 0817.11047

The author uses earlier methods of E. S. Barnes and H. P. F. Swinnerton-Dyer [Acta Math. 87, 259-323 (1952; Zbl 0046.276)] to prove with the help of a computer that the ring \(\mathbb{Z}[ {{1+ \sqrt {69}} \over 2}]\) is Euclidean. This is the first example of a quadratic number field shown to be Euclidean but not norm-Euclidean.
Reviewer: M.Pohst (Berlin)

MSC:

11R11 Quadratic extensions
11Y40 Algebraic number theory computations
11A05 Multiplicative structure; Euclidean algorithm; greatest common divisors

Citations:

Zbl 0046.276
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] E.S. Barnes and H.P.F. Swinnerton-Dyer,The Inhomogeneous Minima of Binary Quadratic Forms, Acta Math.87 (1952), 259–323 · Zbl 0046.27601
[2] D.A. Clark,The Euclidean Algorithm for Galois Extensions of the Rational Numbers, Ph.D. Thesis, McGill University, Montréal, 1992
[3] D. A. Clark and M.R. Murty, The Euclidean Algorithm in Galois Extensions of \(\mathbb{Q}\), (to appear) · Zbl 0814.11049
[4] L.E. Dickson,Algebren und ihre Zahlentheorie, Orell Füssli Verlag, Zürich und Leipzig, 1927
[5] P.G. Lejeune Dirichlet (ed. R. Dedekind),Vorlesungen über Zahlentheorie, Vieweg, Braunschweig, 1893 · Zbl 0376.10001
[6] O. Perron,Quadratische Zahlkörpern mit Euklidischem Algorithmus, Math. Ann.107 (1932), 489–495 · Zbl 0005.38703
[7] P. Weinberger,On Euclidean Rings of Algebraic Integers, Proc. Symp. Pure Math.24 (1973), 321–332 · Zbl 0287.12012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.