Summatory function of the Möbius function. II: Elementary asymptotic upper bounds. (Fonction sommatoire de la fonction de Möbius. II: Majorations asymptotiques élémentaires.) (French) Zbl 0817.11062

With the help of the upper bound on \(| M(x)|/ \sqrt{x}\) obtained in part I of this paper (see the previous review (Zbl 0817.11061)) it is shown that \(| M(x)| \leq {1\over 2360} x\) for \(x\geq 617973\). The proof follows N. Costa Pereira’s method [Acta Arith. 52, 307-337 (1989; Zbl 0696.10007)] which resulted in the bound \(| M(x)| \leq{1\over 1036} x\) for every \(x\geq 120727\).
The best known asymptotic bound is: \(| M(x)| <5.3 x (\log x)^{- 10/9}\) for all \(x>1\), but this is not the best bound for “intermediate” values of \(x\): for \(x<5.27\times 10^{2114}\), the new bound is better.
Remarks. The result of Lioen and van de Lune mentioned in the previous review can be used to further improve upon Dress and El Marraki’s bound.


11Y35 Analytic computations
11Y16 Number-theoretic algorithms; complexity
11N05 Distribution of primes


[1] Cohen, H. and Dress, F. 1988.”Estimations numériques du reste de la fonction sommatoire relative aux entiers sans facteur carré”73–76. Marseille: Publications mathématiques d’Orsay: Colloque de théorie analytique des nombres. [Cohen et Dress 1988], 1985
[2] Costa Pereira N., Acta Arith. 52 pp 307– (1989)
[3] Diamond H. G., Analytic Number Theory pp 239– (1980)
[4] Dress F., Bull. Soc. Math. Fr. pp 47– (1977)
[5] Dress F., Experimental Math. 2 pp 93– (1993)
[6] El Marraki M., Thèse, in: ”Majorations effectives de la fonction sommatoire de la fonction de Möbius” (1991) · Zbl 0869.11075
[7] El Marraki M., Journal of Number Theory.
[8] Hackel R., Sitzungsber. Akad. Wiss. Wien, Math.-Naturwiss. Abt. 2a 118 pp 1019– (1909)
[9] Mac Leod R. A., Acta Arith. 13 pp 49– (1967)
[10] Schoenfeld L., Acta Arith. 15 pp 221– (1960)
[11] von Sterneck D., Monatsh. Math. Phys. 9 pp 43– (1898) · JFM 29.0167.01
[12] Tchebychev P. L., J. de Math. 17 pp 366– (1852)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.