×

Holomorphic automorphisms of certain class of domains of infinite type. (English) Zbl 0817.32011

This paper investigates the holomorphic automorphisms of a special kind of Hartogs’ domains in \(\mathbb{C}^ 2\): \[ E_ p = \bigl\{ (z_ 1, z_ 2) \in \mathbb{C}^ 2 : | z_ 1 |^ 2 + P(z_ 1, \overline z_ 2) < 1 \bigr\} \] where \(P\) is a subharmonic function with \(P(0) = 0\). These automorphisms form a group \(\operatorname{Aut} (E_ p)\), and its compactness is proved, if \(D\) is of infinite type, which means, at any point of the boundary \(\partial D\), the Levi form for \(D\) vanishes up to the infinite order in the complex tangential direction.

MSC:

32H02 Holomorphic mappings, (holomorphic) embeddings and related questions in several complex variables
32T99 Pseudoconvex domains
32A07 Special domains in \({\mathbb C}^n\) (Reinhardt, Hartogs, circular, tube) (MSC2010)
32M05 Complex Lie groups, group actions on complex spaces
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] E. BEDFORD AND S. I. PINCHUK, Domains in C2 with noncompact automorphism group, Math. USSR Sbornik 63 (1989), 141-151. · Zbl 0643.32011
[2] S. BELL AND E. LIGOCKA, A simplification and extension of Fefferman’s theorem on biholo morphic mappings, Invent. Math. 57 (1980), 283-289. · Zbl 0411.32010 · doi:10.1007/BF01418930
[3] H. BOAS AND E. STRAUBE, Complete Hartogs domains in C2 have regular Bergman and Sze projections, Math. Z. 201 (1989), 441-^54. · Zbl 0653.32023 · doi:10.1007/BF01214907
[4] R. GREENE AND S. KRANTZ, Techniques for studyng automorphisms of weakly pseudo-conve domains,
[5] H. KANG, Automorphism groups on certain Reinhardt domains, Bull, of Korean Math. Soc. 3 (1993), 171-177. · Zbl 0789.32003
[6] J. J. KOHN, Boundary behavior of on weakly pseudo-convex manifolds of dimension two, J. Differential Geom. 6 (1972), 523-542. · Zbl 0256.35060
[7] J. -P. ROSAY, Sur une caracterisation de la boule parmi les domaines de C” par son grou d’automorphismes, Ann. Inst. Fourier (Grenoble) 29 (1979), 91-97. · Zbl 0402.32001 · doi:10.5802/aif.768
[8] B. WONG, Characterization of the unit ball in C” by its automorphism group, Invent. Math. 4 (1977), 253-257. · Zbl 0385.32016 · doi:10.1007/BF01403050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.