Chen, Zhiming; Hoffmann, K.-H.; Liang, Jin On a non-stationary Ginzburg-Landau superconductivity model. (English) Zbl 0817.35111 Math. Methods Appl. Sci. 16, No. 12, 855-875 (1993). Summary: We study a non-stationary superconductivity model derived from Ginzburg- Landau macroscopic theory. By using gauge invariance and studying a linear problem with curl boundary conditions, we obtain the existence of solutions. The solution is unique in the sense of gauge equivalence. Cited in 69 Documents MSC: 35Q60 PDEs in connection with optics and electromagnetic theory 35K55 Nonlinear parabolic equations 82D55 Statistical mechanics of superconductors Keywords:Mawell’s equations; non-stationary superconductivity model; Ginzburg- Landau macroscopic theory; gauge invariance; curl boundary conditions; existence PDFBibTeX XMLCite \textit{Z. Chen} et al., Math. Methods Appl. Sci. 16, No. 12, 855--875 (1993; Zbl 0817.35111) Full Text: DOI References: [1] Sobolev Spaces, Academic Press, New York, 1975. · Zbl 0314.46030 [2] Bardeen, Phys. Rev. 108 pp 1175– (1957) [3] Berger, J. funct. Anal. 82 pp 259– (1989) [4] and , Macroscopic models for superconductivity, manuscript. · Zbl 0769.73068 [5] Qiang Du, SIAM Rev. 34 pp 54– (1992) [6] and , Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1977. · doi:10.1007/978-3-642-96379-7 [7] Ginzburg, Zh. Éksper. Teoret. Fiz. 20 pp 1064– (1950) [8] Man of Physics, Eds. and , Pergamon, Oxford, 1965 138-167 (in English). [9] and , Finite Element Methods for Navier-Stokes Equations, Springer, Berlin, 1986. · Zbl 0585.65077 · doi:10.1007/978-3-642-61623-5 [10] Gor’kov, Sov. Phys. JETP 27 pp 328– (1968) [11] and , Linear and Quasilinear Equations of Parabolic Type, Amer. Math. Soc., Providence, RI, 1968. [12] Control of Distributed Singular Systems, Gauthier-Villars, Paris, 1985. [13] Navier-Stokes Equations, North-Holland, Amsterdam, 1975. [14] ’Existence, regularity and asymptotic behavior of the solution to the Ginzburg-Landau equations on \(\mathbb{R}\)3’, IMA Preprint Series, Vol. 464, University of Minnesota, Minneapolis, MN, 1988. [15] Yang, Proc. Roy. Soc. Edinburgh 114A pp 355– (1990) · Zbl 0708.35074 · doi:10.1017/S0308210500024471 [16] Simon, Annali Di Matematica Pura ed Applicata 146 pp 65– (1987) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.