Elliott, C. M.; Matano, H.; Qi, Tang Zeros of a complex Ginzburg-Landau order parameter with applications to superconductivity. (English) Zbl 0817.35112 Eur. J. Appl. Math. 5, No. 4, 431-448 (1994). Summary: We consider the minimizers of the Gibbs free energy which couples a complex Ginzburg-Landau order parameter with a magnetic potential. It is established that the set on which the complex order parameter equals zero consists only of isolated points. Some estimates concerning the set on which the absolute value of the order parameter is small are also given. Numerical simulations are presented for the problem without a magnetic potential. Cited in 1 ReviewCited in 12 Documents MSC: 35Q60 PDEs in connection with optics and electromagnetic theory 35J20 Variational methods for second-order elliptic equations 82D55 Statistical mechanics of superconductors Keywords:gauge invariance; energy functional; Gibbs free energy; complex Ginzburg- Landau order parameter PDFBibTeX XMLCite \textit{C. M. Elliott} et al., Eur. J. Appl. Math. 5, No. 4, 431--448 (1994; Zbl 0817.35112) Full Text: DOI References: [1] Federen, Geometric Measure Theory (1968) [2] DOI: 10.1007/BF01221125 · Zbl 0425.35020 · doi:10.1007/BF01221125 [3] Cronstr?m, Phys. Lett. 90B pp 267– (1980) · doi:10.1016/0370-2693(80)90738-8 [4] Chen, Contemporary Math. 108 pp 19– (1990) · doi:10.1090/conm/108/1068331 [5] Chapman, Proc. Roy. Soc. 119A pp 117– (1991) · Zbl 0732.34003 · doi:10.1017/S0308210500028353 [6] DOI: 10.1137/1034114 · Zbl 0769.73068 · doi:10.1137/1034114 [7] Brieskorn, Plane Algebraic Curves (1986) · doi:10.1007/978-3-0348-5097-1 [8] DOI: 10.1016/0022-1236(89)90071-2 · Zbl 0685.46051 · doi:10.1016/0022-1236(89)90071-2 [9] Yang, Proc. Roy. Soc. 114A pp 355– (1979) [10] Temam, Navier-Stokes Equations (1979) [11] DOI: 10.1007/BF00253122 · Zbl 0647.49021 · doi:10.1007/BF00253122 [12] DOI: 10.1016/0167-2789(90)90143-D · Zbl 0711.35024 · doi:10.1016/0167-2789(90)90143-D [13] Nakahara, Geometry, Topology and Physics (1990) · doi:10.1887/0750306068 [14] Morrey, Multiple Integrals in the Calculus of Variations (1966) · Zbl 0142.38701 [15] DOI: 10.1007/BF02099170 · Zbl 0742.35045 · doi:10.1007/BF02099170 [16] DOI: 10.1007/BF00251230 · Zbl 0616.76004 · doi:10.1007/BF00251230 [17] Jaffe, Vortices and Monopoles (1990) [18] DOI: 10.1137/1034003 · Zbl 0787.65091 · doi:10.1137/1034003 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.