×

The lattices \(BW_{32}\) and \(U_{32}\) are equivalent. (Les réseaux \(BW_{32}\) et \(U_{32}\) sont équivalents.) (French) Zbl 0818.11027

The authors show that a certain 32-dimensional even unimodular lattice considered by J. Martinet is isometric to the well-known Barnes-Wall lattice of this dimension.

MSC:

11H31 Lattice packing and covering (number-theoretic aspects)

References:

[1] Barnes, E.S. and Wall, G.E., Some extreme forms defined in terms of abelian groups, Journal of the Australian Mathematical Society, 1 (1959), 47-63. · Zbl 0109.03304
[2] Conway, J.H. and Pless, V., On the enumeration of self-dual codes, Journal of Combinatorial Theory Ser.A 28 (1980), 26-53. · Zbl 0439.94011
[3] Conway, J.H. and Sloane, N.J.A., Sphere packings, lattices and groups, Springer-Verlag, 2nd édition, 1992. · Zbl 0785.11036
[4] Coulangeon, R., Réseaux quaternioniens et invariant de Venkov, Manuscripta Mathematica82 (1994), 41-50. · Zbl 0797.11041
[5] Forney, G.D.Coset codes - part I, Introduction and geometrical classification, IEEE Trans. Inform. Theory, 34,5 (1988), 1123-1151. · Zbl 0665.94018
[6] Forney, G.D.Coset codes - part II, Binary lattices and related codes, IEEE Trans. Inform. Theory, 34,5 (1988), 1152-1187. · Zbl 0665.94019
[7] Martinet, J., Les réseaux parfaits des espaces euclidiens. En préparation. · Zbl 0869.11056
[8] Martinet, J., Structures algébriques sur les réseaux, Séminaire de théorie des nombres de Paris (1993). Cambridge University Press. A paraître. · Zbl 0829.11035
[9] Koch, H. und Venkov, B., Über ganzhalige unimodulare euklidische Gitter, J. reine angew. Math.398 (1989), 144-168. · Zbl 0667.10020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.