zbMATH — the first resource for mathematics

Cohomology of crossed Lie algebras and additive Milnor’s \(K\)- theory. (Cohomologie des algèbres de Lie croisées et \(K\)-théorie de Milnor additive.) (French) Zbl 0818.17022
Summary: In this paper we define modules of (co)-homology \({\mathfrak H}_ 0({\mathfrak G}, {\mathfrak A})\), \({\mathfrak H}_ 1({\mathfrak G},{\mathfrak A})\), \({\mathfrak H}^ \circ({\mathfrak G},{\mathfrak A})\), \({\mathfrak H}^ 1({\mathfrak G},{\mathfrak A})\) where \({\mathfrak G}\) and \({\mathfrak A}\) are Lie algebras with an extra structure (crossed Lie algebras). These modules satisfy the usual properties of cohomological functors, in particular existence of an exact sequence associated to a short exact sequence of coefficients. For a \(k\)-algebra \(A\), equipped with the trivial Lie algebra structure, we use these homology modules to compare the cyclic homology group \(HC_ 1(A)\) with an additive analogue of Milnor’s group \(K_ 2^{\text{Madd}}(A)\).

17B56 Cohomology of Lie (super)algebras
17B40 Automorphisms, derivations, other operators for Lie algebras and super algebras
17B99 Lie algebras and Lie superalgebras
19D55 \(K\)-theory and homology; cyclic homology and cohomology
18G50 Nonabelian homological algebra (category-theoretic aspects)
18G60 Other (co)homology theories (MSC2010)
19C99 Steinberg groups and \(K_2\)
Full Text: DOI Numdam EuDML
[1] J.M. CASAS, M. LADRA, Perfect crossed modules in Lie algebras, preprint. · Zbl 0860.17032
[2] K. DENNIS, M. STEIN, K2 of discrete valuation rings, Advances in Math., 19 (1975), 182-238. · Zbl 0318.13017
[3] G. ELLIS, Crossed modules and their higher dimensional analogues, Ph.D. Thesis (1984), University College of North Wales, Bangor.
[4] G. ELLIS, Non abelian exterior products of Lie algebras and an exact sequence in homology of Lie algebra, Glasgow Math. J., 29 (1987), 13-19. · Zbl 0631.20040
[5] H. GARLAND, The arithmetic theory of loop groups, Publ. I.H.E.S., 52 (1980), 5-136. · Zbl 0475.17004
[6] D. GUIN, Cohomologie et homologie non abéliennes des groupes. J. of Pure and Applied Algebra, 50 (1988), 109-137. · Zbl 0653.20051
[7] D. GUIN, Homologie du groupe linéaire et K-théorie de Milnor des anneaux, J. of Algebra, 123 (1989), 27-59. · Zbl 0669.20037
[8] C. KASSEL, J.-L. LODAY, Extensions centrales d’algèbres de Lie, Ann. Inst. Fourier, Grenoble, 32-4 (1982), 119-142. · Zbl 0485.17006
[9] J.-L. LODAY, Comparaison des homologies du groupe linéaire et de son algèbre de Lie. Ann. Inst. Fourier, Grenoble, 37-4 (1987), 167-190. · Zbl 0619.20025
[10] J.-L. LODAY, Cyclic homology, grundlehren der mathematischen wissenschaften, 301, Springer-Verlag (1992). · Zbl 0780.18009
[11] J.-L. LODAY, D. QUILLEN, Cyclic homology and the Lie algebra homology of matrices, Comment. Math. Helv., 59 (1984), 565-591. · Zbl 0565.17006
[12] R. LAVENDHOMME, R. ROISIN, Cohomologie non abélienne de structures algébriques, J. of Algebra, 67 (1980), 385-414. · Zbl 0503.18013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.