×

zbMATH — the first resource for mathematics

The category of disintegration. (English) Zbl 0818.18003
Regarding finite measure spaces, measure preserving maps are very stringent, in fact these are too much like equivalences, while the measurable maps constitute a category apparently similar, but different to \({\mathcal T}op\). Here two monoidal categories are presented to compensate for the lack of products therein; the morphisms are chosen to be the measure zero reflecting (measurable) maps in the former, and the so- called disintegrations in the latter. They are proposed as a background to an ultimate study, in the sequel, of abstract \(X\)-families in the context of indexed category theory. The Radon-Nikodym derivate and Fubini’s theorem are also encoded in a categorical vein, in specific examples [compare with F. E. J. Linton, Functorial measure theory, Funct. Anal., Proc. Conf., Univ. Calif., Irvine 1966, 36-49 (1967; Zbl 0218.28006)].

MSC:
18D10 Monoidal, symmetric monoidal and braided categories (MSC2010)
28E05 Nonstandard measure theory
46G05 Derivatives of functions in infinite-dimensional spaces
Citations:
Zbl 0218.28006
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] 1 Adamek , J. , Herrlich , H. , Strecker , G. , Abstract and Concrete Categories , Wiley (U.S.A., 1990 ) Zbl 0695.18001 · Zbl 0695.18001
[2] 2 Bénabou , J. , ” Fibered Categories and the Foundations of Naive Category Theory ,” J. Symb. Logic ( 1985 ), pp. 10 - 37 . Zbl 0564.18001 · Zbl 0564.18001
[3] 3 Börger , R. , ” Integration Over Sequential Boolean Algebras ,” preprint ( 1989 ).
[4] 4 Breitsprecher , S. , ” On the Concept of a Measurable Space: I ,” in Springer Lecture Notes 753 , Springer ( New York , 1979 ), pp. 157 - 168 . Zbl 0457.18005 · Zbl 0457.18005
[5] 5 Dixmier , J. , C*-Algebras , North-Holland Mathematical Library 15 , North Holland ( New York , 1982 ). Zbl 0372.46058 · Zbl 0372.46058
[6] 6 Linton , F.E. , The Functorial Foundations of Measure Theory, Ph. D. Thesis , ( Columbia , 1963 ).
[7] 7 Lever , D. , Continuous Families, Topological Categories, and Toposes , Ph. D. Thesis, ( Dalhousie , 1981 ).
[8] 8 Paré , R. , Schumacher , D. , ” Abstract Families and the Adjoint Functor Theorem ,” in Springer Lecture Notes 661 , Springer ( New York , 1978 ), pp. 1 - 125 . Zbl 0389.18002 · Zbl 0389.18002
[9] 9 Schiopu , I. , A Categorical Approach to Probability Theory , M. Sc. Thesis, ( Dalhousie , 1973 ).
[10] 10 Ionescu Tulcea , A. , Ionescu Tulcea , C. , Topics in the Theory of Lifting , Ergebnisse der Mathematik und ihrer Grenzgebiete , Band 48 , Springer Verlag , ( Berlin , 1969 ). Zbl 0179.46303 · Zbl 0179.46303
[11] 11 Wendt , M. , On Measurably Indexed Families of Hilbert Spaces , Ph. D. Thesis, ( Dalhousie , 1993 ).
[12] 12 Wood , R.J. , ” Some remarks on total categories ”, J. Algebra 75 ( 1982 ), 538 - 545 . Zbl 0504.18001 · Zbl 0504.18001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.