×

Volume densities with the mean value property for harmonic functions. (English) Zbl 0818.31003

Let \(U\) be a bounded domain in \(\mathbb{R}^ d\) \((d\geq 2)\) such that \(0\in U\), and let \(\lambda\) denote Lebesgue measure on \(U\). It is shown that there exists a (strictly) positive \(C^ \infty\) function \(w\) on \(U\) such that \(h(0)= \int hw d\lambda\) for every \(h\) in \({\mathcal H}_ b (U)\), the set of bounded harmonic functions on \(U\). Further, if \(\partial U\) is of class \(C^{1+ \varepsilon}\), then it can be arranged that \(\inf w(U)>0\). The smoothness condition on \(\partial U\) cannot be omitted: the authors construct a domain \(U\) such that if \(w\) is a nonnegative measurable function on \(U\) which satisfies \(h(0)= \int hw d\lambda\) for every \(h\) in \({\mathcal H}_ b (U)\), then \(\inf w(U)= 0\). This answers a question posed by A. Cornea at the International Conference on Potential Theory in Nagoya in 1990.

MSC:

31B05 Harmonic, subharmonic, superharmonic functions in higher dimensions
31A05 Harmonic, subharmonic, superharmonic functions in two dimensions
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] J. Bliedtner and W. Hansen, Potential theory, Universitext, Springer-Verlag, Berlin, 1986. An analytic and probabilistic approach to balayage. · Zbl 0706.31001
[2] Gustave Choquet and Jacques Deny, Sur quelques propriétés de moyenne caractéristiques des fonctions harmoniques et polyharmoniques, Bull. Soc. Math. France 72 (1944), 118 – 140 (French). · Zbl 0063.00852
[3] Björn E. J. Dahlberg, Estimates of harmonic measure, Arch. Rational Mech. Anal. 65 (1977), no. 3, 275 – 288. · Zbl 0406.28009
[4] Leopold Flatto, Functions with a mean value property, J. Math. Mech. 10 (1961), 11 – 18. · Zbl 0097.30605
[5] Avner Friedman and Walter Littman, Functions satsifying the mean value property, Trans. Amer. Math. Soc. 102 (1962), 167 – 180. · Zbl 0103.32201
[6] Adriano M. Garsia, A note on the mean value property, Trans. Amer. Math. Soc. 102 (1962), 181 – 186. · Zbl 0103.32202
[7] Rudi Hirschfeld, Sur les fonctions \?-harmoniques dans un espace de mesure localement compact, C. R. Acad. Sci. Paris Sér. A-B 262 (1966), A174 – A176 (French). · Zbl 0139.06701
[8] Emmanuel P. Smyrnélis, Mesures normales et fonctions harmoniques, Bull. Sci. Math. (2) 95 (1971), 197 – 207 (French). · Zbl 0229.31010
[9] Kjell-Ove Widman, Inequalities for the Green function and boundary continuity of the gradient of solutions of elliptic differential equations, Math. Scand. 21 (1967), 17 – 37 (1968). · Zbl 0164.13101
[10] Lawrence Zalcman, Mean values and differential equations, Israel J. Math. 14 (1973), 339 – 352. · Zbl 0263.35013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.