# zbMATH — the first resource for mathematics

Another step toward the solution of the Pompeiu problem in the plane. (English) Zbl 0818.35136
Let $$\Omega \subset \mathbb{R}^ 2$$ be a bounded open set for which $$f \equiv 0$$ is the only continuous function on $$\mathbb{R}^ 2$$ such that (1) $$\int_{\sigma (\Omega)} f(x) dx = 0$$ for every rigid motion $$\sigma$$ of the plane. A bounded open set $$\Omega \subset \mathbb{R}^ 2$$ is said to have the Pompeiu property if there exist no nontrivial continuous function on $$\mathbb{R}^ 2$$ for which (1) holds. Several authors have determined bounded domains $$\Omega \subset \mathbb{R}^ 2$$ having the Pompeiu property.
The main result of this paper is the following: Let $$\Omega \subset \mathbb{R}^ 2$$ be a bounded simply-connected open set whose boundary is a closed simple curve parametrized by $$x(s) = (x_ 1(s), x_ 2(s))$$, $$s \in [- \pi, \pi]$$. Suppose that there exist $$M,N \in \mathbb{Z}$$ and $$a_ k \in \mathbb{C}$$, $$k = - M, \dots, N$$, with $$a_ M$$, $$a_ N \neq 0$$, such that $x_ 1 (s) + x_ 2 (s) = \sum^ N_{k= -M} a_ k e^{iks}.$ Let $$x_ 1 (z)$$, $$x_ 2 (z)$$ be the analytic extension of $$x_ 1 (s)$$ and $$x_ 2 (s)$$ satisfying $$(x_ 1'(z), x_ 2'(z))\neq (0,0) \in \mathbb{C}^ 2$$ for every $$z \in \mathbb{C}$$. Then $$\Omega$$ has the Pompeiu property.
Reviewer: G.Anger (Berlin)

##### MSC:
 35R30 Inverse problems for PDEs 31A25 Boundary value and inverse problems for harmonic functions in two dimensions 35P05 General topics in linear spectral theory for PDEs 42B10 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
##### Keywords:
Pompeiu problem; Pompeiu property
Full Text:
##### References:
 [1] Berenstein C., An inverse spectral theorem and its relation to the Pompeiu problem 37 pp 124– (1980) · Zbl 0449.35024 [2] Berenstein C. A., An inverse Neumann problem 382 pp 1– (1987) · Zbl 0623.35078 [3] Brown L., A note on the Pompeiu problem for convex domains 259 pp 107– (1982) · Zbl 0464.30035 [4] Brown L., Spectral synthesis and the Pompeiu problem 23 pp 125– (1973) · Zbl 0265.46044 [5] Caffarelli L. A., The regularity of free boundaries in higher dimensions 139 pp 155– (1977) [6] Chakalov L., Sur un probl‘me de D. Pompeiu 40 pp 1– (1944) · Zbl 0063.07316 [7] Garofalo N., Asymptotic expansions for a class of Fourier integrals and applications to the Pompeiu problem 56 pp 1– (1991) · Zbl 0737.35146 [8] Garofalo N., New results on the Pompeiu problem 325 pp 243– (1991) · Zbl 0737.35147 [9] Pompeiu D., Sur certains systèmes d’équations linéries et sur une propriété intégrate des functions de plusieurs variables 188 pp 1138– (1929) [10] Pompeiu D., Sur une propriété intégrate des fonctions de deux variables réelles. 15 pp 265– (1929) [11] Riemann, R. B. 1953. ”Sullo svolgimento del quoziente di due serie ipergeometriche in funzione continua infinita.ldquo;”. complete works, Dover [12] Williams S. A., A partial solution of the Pompeiu problem 223 pp 183– (1976) · Zbl 0329.35045 [13] Williams S. A., Analyticity of the boundary for Lipschitz domains without the Pompeiu property. 30 pp 357– (1981) · Zbl 0439.35046 [14] Yau S. T., Seminar on Differential Geometry 102 (1982) · Zbl 0471.00020 [15] Zalcman L., Analyticity and the Pompeiu problem 47 pp 237– (1972) · Zbl 0251.30047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.