×

Free field representation for massive integrable models. (English) Zbl 0818.46079

Summary: A new approach to massive integrable models is considered. It allows one to find symmetry algebras which define the spaces of local operators and to get general representations for form-factors in the SU(2) Thirring and Sine-Gordon models.

MSC:

81T10 Model quantum field theories
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
46N50 Applications of functional analysis in quantum physics
37N20 Dynamical systems in other branches of physics (quantum mechanics, general relativity, laser physics)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Bethe, H. A.: Zur Theorie der Metalle: I. Eigenwerte und Eigenfunktionen der linearen Atomkette. Z. Phys.71, 205–226 (1931) · Zbl 0002.37205 · doi:10.1007/BF01341708
[2] Berezin, F. A., Pokhil, G. P., Finkelberg, V. M.: Schrödinger’s equation for systems of one-dimensional particles with pointwise interactions. Vestn. Mosk. Gos. Univ., Ser. Mat. Mekh.1, 21–28 (1964)
[3] McGuire, J. B.: Study of exactly soluble one-dimensionalN-body problems. Math. Phys.5, 622–629 (1964) · Zbl 0131.43804 · doi:10.1063/1.1704156
[4] Gardner, C. S., Greene, J. M., Kruskal, M. D., Miura, R. H.: Method for solving the Korteveg-de Vries equation. Phys. Rev. Lett.19, 1095–1097 (1967) · Zbl 1103.35360 · doi:10.1103/PhysRevLett.19.1095
[5] Zakharov, V. E., Shabat A. B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Zh. Eksp. Teor. Fiz.61, 118–134 (1971)
[6] Arefeva, I. Ya., Korepin, V. E.: Scattering in the two-dimensional model with the Lagrangian \(L = (\frac{1}{\gamma })[(\partial _\mu u)^2 /2 + m^2 (\cos u - 1)]\) . Pisma v Zh. Eks. Teor. Fiz.20, 680–684 (1974)
[7] Kulish, P. P.: Factorization of the classical and quantum S-matrix and conservation laws. Theor. Math. Phys.26 198–205 (1976) · doi:10.1007/BF01079418
[8] Zamolodchikov, A. B.: Exact two-particle S-matrix of quantum Sine-Gordon solitons. Commun. Math. Phys.55, 183–186 (1977) · doi:10.1007/BF01626520
[9] Karowski, M., Thun, H. J., Truong, T. T.: On the uniqueness of a purely elastic S-matrix in (1+1) dimensions. Phys. Lett.B67, 321–322 (1977)
[10] Zamolodchikov, A. B., Zamolodchikov, Al. B.: Factorized S-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models. Ann. Phys. (N.Y.)120, 253–291 (1979) · doi:10.1016/0003-4916(79)90391-9
[11] Ogievetski, E. I., Reshetikhin, N. Yu., Wiegmann P. B.: The principal chiral field in two dimensions on classical Lie algebras: The Bethe-ansatz solution and factorized theory of scattering. Nucl. Phys.B280 [FS 18], 45–96 (1987) · doi:10.1016/0550-3213(87)90138-6
[12] Fateev, V. A., Zamolodchikov, A. B.: Conformal field theory and purely elastic S-matrices. In: Brink, L., Friedan, D., Polyakov, A. M. (eds.) Physics and Mathematics of Strings. Memorial volume for Vadim Knizhnik, Singapore: World Scientific, 1989, pp. 245–270 · Zbl 0737.17014
[13] Freund, P. G. O., Classen, T. R., Melzer, E.: S-matrices for perturbations of certain conformal field theories. Phys. Lett.B229, 243–247 (1989)
[14] Sotkov, G., Zhu, G.-J.: Bootstrap fusions and tricritical Potts model away from criticality. Phys. Lett.B229, 391–397 (1989)
[15] Christe, J. L., Mussardo, G.: Integrable systems away from criticality: The Toda field theory and S-matrix of the tricritical Ising model. Nucl. Phys.B330, 465–478 (1990) · doi:10.1016/0550-3213(90)90119-X
[16] Mussardo, G.: Off-critical statistical models factorized scattering theories and bootstrap program. Phys. Rep.218, 215–379 (1992) · doi:10.1016/0370-1573(92)90047-4
[17] Karowski, M., Weisz, P.: Exact form factors in (1+1)-dimensional field theoretic models with solution behavior. Nucl. Phys.B139, 455–476 (1978) · doi:10.1016/0550-3213(78)90362-0
[18] Berg, B., Karowski, M., Weisz, P.: Construction of Green’s functions from an exact S-matrix. Phys. Rev.D19, 2477–2479 (1979)
[19] Smirnov, F. A.: Quantum Gelfand-Levitan-Marchenko equations and form-factors in the Sine-Gordon model. J. Phys.A17, L1873-L1891 (1984)
[20] Smirnov, F. A.: Solitons form-factors in the sine-Gordon model. J. Phys.A19, L575-L578 (1986)
[21] Kirillov, A. N., Smirnov, F. A.: A representation of current algebra connected with SU(2) invariant Thirring model. Phys. Lett.B198, 506–510 (1987)
[22] Smirnov, F. A.: Form-factors in completely integrable models of quantum field theory. Singapore: World Scientific, 1992 · Zbl 0788.46077
[23] Yurov, V. P., Zamolodchikov, Al. B.: Correlations functions of integrable 2D models of the relativistic field theory; Ising model. Int. J. Mod. Phys.A6, 3419–3440 (1991) · doi:10.1142/S0217751X91001660
[24] Faddeev, L. D.: Quantum completely integrable models in field theory. Sov. Sci. Rev. Math. Phys.C1, 107–155 (1980) · Zbl 0569.35064
[25] Mitter, P. K., Weisz, P. H.: Asymptotic scale invariance in a massive Thirring model with U(n) symmetry. Phys. Rev.D8, 4410–4429 (1973) · doi:10.1103/PhysRevB.8.4410
[26] Banks, T., Horn, D., Neuberger, H.: Bosonization of theSU(N) Thirring models. Nucl. Phys.B108, 119–129 (1976) · doi:10.1016/0550-3213(76)90127-9
[27] Halpern, M. B.: Quantum ”solitons” which areSU(N) fermions. Phys. Rev.D12, 1684–1699 (1976)
[28] Ablowitz, M. J., Kaup, D. J., Newell, A. C., Segur, H.: Method for Solving the Sine-Gordon Equation. Phys. Rev. Lett.30, 1262–1264 (1973) · doi:10.1103/PhysRevLett.30.1262
[29] Takhtadzhian, L. A., Faddeev, L. D.: Essentially nonlinear one-dimensional model of classical field theory. Theor. Math. Phys.21, 160–174 (1974)
[30] Zamolodchikov, A. B.: Unpublished
[31] Frenkel, I. B., Reshetikhin, N. Yu.: Quantum affine algebras and holonomic difference equations. Commun. Math. Phys.146, 1–60 (1992) · Zbl 0760.17006 · doi:10.1007/BF02099206
[32] Smirnov, F. A.: Dynamical symmetries of massive integrable models I, II. Int. J. Mod. Phys.A7, Suppl. 1B, 813–837, 839–858 (1992) · Zbl 0925.17027 · doi:10.1142/S0217751X92004063
[33] Foda, O., Miwa, T.: Corner transfer matrices and quantum affine algebras. Int. J. Mod. Phys.A7, Suppl. 1A, 279–302 (1992) · Zbl 0925.17008 · doi:10.1142/S0217751X92003811
[34] Davies, B., Foda, O., Jimbo, M., Miwa, T., Nakayashiki, A.: Diagnolization of the XXZ Hamiltonian by Vertex Operators. Commun. Math. Phys.151, 89–153 (1993) · Zbl 0769.17020 · doi:10.1007/BF02096750
[35] Jimbo, M., Miki, K., Miwa, T., Nakayashiki, A.: Correlation functions of the XXZ model for {\(\Delta\)}<. Phys. Lett.A168, 256–263 (1992) · doi:10.1016/0375-9601(92)91128-E
[36] Jimbo, M., Miwa, T., Nakayashiki, A.: Difference equations for the correlations functions of the eight-vertex model. J. Phys. A: Math. Gen.26, 2199–2209 (1993) · Zbl 0773.60090 · doi:10.1088/0305-4470/26/9/015
[37] Frenkel, I. B., Jing, N.: Vertex representations of quantum affine algebras. Proc. Natl. Acad. Sci. USA85, 9373–9377 (1988) · Zbl 0662.17006 · doi:10.1073/pnas.85.24.9373
[38] Clavelli, L., Shapiro, J. A.: Pomeron Factorization in General Dual Models. Nucl. Phys.B57, 490–535 (1973) · doi:10.1016/0550-3213(73)90113-2
[39] Lukyanov, S., Shatashvili, S.: Free field representation for the classical limit of the quantum affine algebra. Phys. Lett.B298, 111–115 (1993)
[40] Feigin, B. L., Fuchs, D. B.: Unpublished (1983)
[41] Dotsenko, Vl. L., Fateev, V. A.: Conformal algebra and multipoint correlation functions in 2D statistical models. Nucl. Phys.B240 [FS12], 312–348 (1984);B251, 691–734 (1985) · doi:10.1016/0550-3213(84)90269-4
[42] Matsuo, A.: Free Field Representation of Quantum Affine Algebra \(U_q (\widehat{sl(2)})\) , Nagoya University preprint, August 1992
[43] Shiraishi, J.: Free Boson Representation of \(U_q (\widehat{sl(2)})\) . UT-617 Tokyo preprint (1992); Kato, A., Quano, Y., Shiraishi, J.: Free Boson Representation of q- Vertex Operators and Their Correlation Functions. UT-618 Tokyo preprint (1992) · Zbl 0795.17024
[44] Abada, A., Bougourzi, A. H., El Gradechi, M. A.: Deformation of the Wakimoto construction. Mod. Phys. Lett.A8, 715–724 (1993) · Zbl 0929.17015 · doi:10.1142/S0217732393000738
[45] Berg, B., Karowski, M., Kurak, V., Weisz, P.: Factorized U(n) symmetric S-matrices in two dimensions. Nucl. Phys.B134, 125–132 (1978) · doi:10.1016/0550-3213(78)90489-3
[46] Lüscher, M.: Quantum non-local charges and absence of particle production in the two-dimensional non-linear {\(\sigma\)}-model. Nucl. Phys.B135, 1–19 (1978) · doi:10.1016/0550-3213(78)90211-0
[47] Bernard, D., LeClair, A.: Quantum group symmetries and non-local currents in 2D QFT. Commun. Math. Phys.142, 99–138 (1991) · Zbl 0746.35037 · doi:10.1007/BF02099173
[48] LeClair, A.: Restricted Sine-Gordon theory and the minimal conformal series. Phys. Lett.B230, 103–107 (1989) · Zbl 1323.81052
[49] Reshetikhin, N. Yu., Smirnov, F. A.: Hidden quantum group symmetry and integrable perturbations of conformal field theories. Commun. Math. Phys.131, 157–177 (1990) · Zbl 0723.35077 · doi:10.1007/BF02097683
[50] Kulish, P. P., Reshetikhin, N. Yu., Sklyanin, E. K.: Yang-Baxter equation and representation theory. Lett. Math. Phys.5, 393–403 (1981) · Zbl 0502.35074 · doi:10.1007/BF02285311
[51] Drinfel’d, V. G.: Quantum Groups. In: Proceedings of the International Congress of Mathematics. Berkeley 1986,1, California: Acad. Press, 1987, pp. 798–820
[52] Sklyanin, E. K., Faddeev, L. D.: Quantum mechanical approach to completely integrable field theory models. Sov. Phys. Dokl.23, 902–904 (1978)
[53] Lukyanov, S.: Correlators of the Jost Functions in the Sine-Gordon Model. RU-93-55 Rutgers preprint (1993)
[54] LeClair, A.: Particle-Field Duality and Form Factors from Vertex Operators. CLNS 93/1263 Cornell preprint (1993) · Zbl 0925.73333
[55] Kirillov, A. N., Reshetikhin, N. Yu.: Representations of the algebraU q(sl(2)),q-orthogonal polynomials and invariants of links. In: Kac, V. G. (ed.) Infinite-dimensional Lie algebras and groups. Singapore: World Scientific, 1989 · Zbl 0742.17018
[56] Belavin, A. A., Polyakov, A. M., Zamolodchikov, A. B.: Infinite conformal symmetries in two-dimensional quantum field theory. Nucl. Phys.B241, 333–380 (1984) · Zbl 0661.17013 · doi:10.1016/0550-3213(84)90052-X
[57] Felder, G., Froehlich, J., Keller, G.: Braid matrices and structure constants for minimal conformal models. Commun. Math. Phys.124, 647–664 (1989) · Zbl 0696.17009 · doi:10.1007/BF01218454
[58] Alvarez-Gaumé, L., Gomez, G., Sierra, C.: Quantum group interpretation of some conformal field theories. In: Brink, L., Friedan, D., Polyakov, A. M. (eds) Physics and Mathematics of Strings. Memorial volume for Vadim Knizhnik, Singapore: World Scientific, 1989, pp. 245–270 · Zbl 0689.17009
[59] Moore, G., Seiberg, N.: Classical and quantum conformal field theory. Commun. Math. Phys.123, 177–254 (1989) · Zbl 0694.53074 · doi:10.1007/BF01238857
[60] Moore, G., Reshetikhin, N. Yu.: A comment on quantum group symmetry in conformal field theory. Nucl. Phys.B328, 557–574 (1989) · doi:10.1016/0550-3213(89)90219-8
[61] Felder, G.: BRST approach to minimal models. Nucl. Phys.B317, 215–236 (1989) · doi:10.1016/0550-3213(89)90568-3
[62] Fateev, V. A., Zamolodchikov, A. B.: A model factorized S-matrix and an integrable spin-1 Heisenberg chain. Sov. J. Nucl. Phys.32, 298–303 (1980)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.