×

On the theory of mixtures of elastic solids. (English) Zbl 0818.73003

Summary: We derive a theory of binary mixtures of elastic solids in which the independent constitutive variables are the displacement gradients, displacement fields, volume fractions and volume fraction gradients. The theory is linearized, and a uniqueness theorem with no definiteness assumption on the elasticities and no restriction on the initial stresses is presented.

MSC:

74A20 Theory of constitutive functions in solid mechanics
74B99 Elastic materials
80A17 Thermodynamics of continua
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] C. Truesdell and R. Toupin, The classical field theories. In: S. Flügge (ed.), Handbuch der Physik, Vol. III/3. Berlin: Springer-Verlag (1960).
[2] P. Kelly, A reacting continuum. Int. J. Engng. Sci. 2 (1964) 129-153. · Zbl 0137.18401
[3] A.C. Eringen and J.D. Ingram, A continuum theory of chemically reacting media. I. Int. J. Engng. Sci. 3 (1965) 197-212.
[4] J.D. Ingram and A.C. Eringen, A continuum theory of chemically reacting media. II. Constitutive equations of reacting fluid mixtures. Int. J. Engng. Sci. 4 (1967) 289-322.
[5] A.E. Green and P.M. Naghdi, A dynamical theory interacting continua. Int. J. Engng. Sci. 3 (1965) 231-241.
[6] A.E. Green and P.M. Naghdi, A note on mixtures, Int. J. Engng. Sci. 6 (1968) 631-635. · Zbl 0172.52102
[7] I. Müller, A thermodynamic theory of mixtures of fluids. Arch. Rational Mech. Anal. 28 (1968) 1-39. · Zbl 0157.56703
[8] N. Dunwoody and I. Müller, A thermodynamic theory of two chemically reacting ideal gases with different temperatures. Arch. Rational Mech. Anal. 29 (1968) 344-369.
[9] R.M. Bowen and J.C. Wiese, Diffusion in mixtures of elastic materials, Int. J. Engng. Sci. 7 (1969) 689-722. · Zbl 0188.59301
[10] A.E. Green and T.R. Steel, Constitutive equations for interacting continua. Int. J. Engng. Sci. 4 (1966) 483-500.
[11] T.R. Steel, Applications of a theory of interacting continua. Quart. J. Mech. Appl. Math. 20 (1967) 57-72. · Zbl 0166.21405
[12] T.R. Steel, Linearised theory of plane strain of a mixture of two solids. Int. J. Engng. Sci. 5 (1967) 775-789. · Zbl 0158.21303
[13] A. Bedford and M. Stern, A multi-continuum theory for composite elastic materials. Acta Mechanica 14 (1972) 85-102. · Zbl 0251.73006
[14] A. Bedford and M. Stern, Toward a diffusing continuum theory of composite elastic materials. J. Appl. Mech. 38 (1972) 8-14. · Zbl 0251.73006
[15] A. Bedford and D.S. Drumheller, Theory of immiscible and structured mixtures. Int. J. Engng. Sci. 21 (1983) 863-960. · Zbl 0534.76105
[16] J.J. Pop and R.M. Bowen, A theory of mixtures with a long range spatial interaction. Acta Mechanica 29 (1978) 21-34. · Zbl 0378.73006
[17] H.F. Tiersten and M. Jahanmir, A theory of composites modeled as interpenetrating solid continua. Arch. Rational Mech. Anal. 65 (1977) 153-192. · Zbl 0377.73007
[18] R.M. Bowen, Theory of Mixtures. In: A.C. Eringen (ed.), Continuum Physics, Vol. III. New York: Academic Press (1976). · Zbl 0346.58010
[19] R.J. Atkin and R.E. Craine, Continuum theories of mixtures: basic theory and historical development. Quart. J. Mech. Appl. Math. 29 (1976) 209-245. · Zbl 0339.76003
[20] R.J. Atkin and R.E. Craine, Continuum theories of mixtures: applications. J. Inst. Math. Appl. 17 (1976) 153-207. · Zbl 0355.76004
[21] S.L. Passman, Mixtures of granular materials. Int. J. Engng. Sci. 15 (1977) 117-129. · Zbl 0352.73006
[22] M.A. Goodman and S.C. Cowin, A continuum theory for granular materials. Arch. Rational Mech. Anal. 44 (1972) 249-266. · Zbl 0243.76005
[23] W.O. Williams, Constitutive equations for flow of an incompressible viscous fluid through a porous medium. Quart. Appl. Math. 36 (1978) 255-267. · Zbl 0392.76086
[24] D.E. Kenyon, The theory of an incompressible solid-fluid mixture. Arch. Rational Mech. Anal. 62 (1976) 131-147. · Zbl 0361.73002
[25] D.S. Drumheller, The theoretical treatment of a porous solid using a mixture theory. Int. J. Solids Struct. 14 (1978) 441-456. · Zbl 0377.73004
[26] A. Bedford and D.S. Drumheller, A variational theory of immiscible mixtures. Arch. Rational Mech. Anal. 68 (1978) 37-51. · Zbl 0391.76012
[27] J.W. Nunziato and E.W. Walsh, On ideal multiphase mixtures with chemical reactions and diffusion. Arch. Rational Mech. Anal. 73 (1980), 285-311. · Zbl 0453.76092
[28] A.E. Green and P.M. Naghdi, On basic equations for mixtures. Quart. J. Mech. Appl. Math. 22 (1969) 427-438. · Zbl 0183.54602
[29] A.E. Green and P.M. Naghdi, On continuum thermodynamics. Arch. Rational Mech. Anal. 48 (1972) 352-378. · Zbl 0255.73006
[30] A.E. Green and N. Laws, Global properties of mixtures. Arch. Rational Mech. Anal. 43 (1971) 45-61. · Zbl 0229.76030
[31] J.W. Nunziato and S.C. Cowin, A nonlinear theory of elastic materials with voids. Arch. Rational Mech. Anal. 72 (1979) 175-201. · Zbl 0444.73018
[32] R.J. Atkin, P. Chadwick and T.R. Steel, Uniqueness theorems for linearized theories of interacting continua. Mathematika 14 (1967) 27-42. · Zbl 0204.24905
[33] R.J. Knops and T.R. Steel, Uniqueness in the linear theory of a mixture of two elastic solids. Int. J. Engng. Sci. 7 (1969) 571-577. · Zbl 0188.59204
[34] R.J. Knops and L.E. Payne, Uniqueness theorems in linear elasticity. In: B.D. Coleman (ed.), Springer Tracts in Natural Philosophy, vol. 19, Berlin/Heidelberg/New York: Springer-Verlag (1971). · Zbl 0224.73016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.