Fabre, Caroline; Puel, Jean-Pierre; Zuazua, Enrike Approximate controllability of the semilinear heat equation. (English) Zbl 0818.93032 Proc. R. Soc. Edinb., Sect. A 125, No. 1, 31-61 (1995). Summary: This article is concerned with the study of approximate controllability for the semilinear heat equation in a bounded domain \(\Omega\) when the control acts on any open and nonempty subset of \(\Omega\) or on a part of the boundary. In the case of both an internal and a boundary control, the approximate controllability in \(L^ p(\Omega)\) for \(1\leq p< +\infty\) is proved when the nonlinearity is gobally Lipschitz with a control in \(L^ \infty\). In the case of the interior control, we also prove approximate controllability in \(C_ 0(\Omega)\). The proof combines a variational approach to the controllability problem for linear equations and a fixed point method. We also prove that the control can be taken to be of “quasi bang-bang” form. Cited in 1 ReviewCited in 184 Documents MSC: 93C20 Control/observation systems governed by partial differential equations 35K60 Nonlinear initial, boundary and initial-boundary value problems for linear parabolic equations 93C10 Nonlinear systems in control theory 93B05 Controllability Keywords:Lipschitz nonlinearity; bang-bang; approximate controllability; semilinear heat equation; boundary control; interior control PDF BibTeX XML Cite \textit{C. Fabre} et al., Proc. R. Soc. Edinb., Sect. A, Math. 125, No. 1, 31--61 (1995; Zbl 0818.93032) Full Text: DOI References: [1] DOI: 10.1016/0362-546X(92)90050-O · Zbl 0768.93011 [2] DOI: 10.1137/0329040 · Zbl 0729.49022 [3] Lions, Problèmes aux limites non homogènes et applications 1 (1968) · Zbl 0235.65074 [4] Lions, Proceedings of ”Jornadas Hispano-Francesas sobre control de Sistemas Distribuidos” (1990) [5] Lions, contrôlabilité exacte 8 (1988) [6] Lions, stabilization and perturbations for distributed systems. 30 pp 1– (1986) [7] DOI: 10.1515/crll.1988.390.79 · Zbl 0644.35050 [8] Zuazua, Nonlinear Differential Equations and Their Applications 10 pp 357– (1991) [9] DOI: 10.1137/0316040 · Zbl 0388.93027 [10] Lions, contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles (1968) [11] Ladyzenskaja, Linear and Quasilinear Equations of Parabolic Type (1968) [12] Henry, Etude de la contrôlabilité de certaines équations paraboliques VI (1978) [13] Friedman, Partial Differential Equations of Parabolic Type (1964) · Zbl 0144.34903 [14] Fabre, C. R. Acad. Sci. Paris Sér. 1 Math. 315 pp 807– (1992) [15] Diaz, C. R. Acad. Sci. Paris Sér. 1 Math. 312 pp 519– (1991) [16] Cazenave, Introduction aux problèmes d’évolution semi-linéaires (1990) · Zbl 0786.35070 [17] Aubin, L’analyse Non Linéaire et ses Motivations Économiques (1984) [18] DOI: 10.1016/0022-0396(87)90043-X · Zbl 0631.35044 [19] DOI: 10.1007/978-1-4612-5561-1 · Zbl 0516.47023 [20] Mizohata, Mem. Coll. Sci. Univ. Kyoto, Ser. A 31 pp 219– (1958) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.