zbMATH — the first resource for mathematics

A Fermat principle for stationary space-times and applications to light rays. (English) Zbl 0819.53037
The work presents an extension of Fermat principle in optics to Lorentzian product manifolds with conformally stationary metrics. The existence and multiplicity of null geodesic lines joining a given point to a timelike curve is studied. The Morse theory is used to relate the set of these geodesic lines to the topology of the space-time. As an example, the results are applied to Kerr space-time outside the stationary limit surface.

53Z05 Applications of differential geometry to physics
78A25 Electromagnetic theory, general
83C50 Electromagnetic fields in general relativity and gravitational theory
Full Text: DOI
[1] Avez, A., Essais de géométrie riemannienne hyperbolique: applications à la relativité générale, Ann. inst. Fourier, 132, 105-190, (1963) · Zbl 0188.54801
[2] V. Benci and D. Fortunato, On the existence of infinitely many geodesics on space-time manifolds, Adv. Math., to appear. · Zbl 0808.58016
[3] Benci, V.; Fortunato, D.; Giannoni, F., Geodesic on static Lorentz manifolds with convex boundary, (), 21-41 · Zbl 0820.53050
[4] Benci, V.; Fortunato, D.; Giannoni, F., On the existence of geodesics in static Lorentz manifolds with singular boundary, Ann. sc. norm. sup. ser. IV, XIX, 255-289, (1992) · Zbl 0776.53040
[5] Benci, V.; Fortunato, D.; Masiello, A., Geodesics on Lorentzian manifolds, Preprint dip. mat. univ. Bari, (1992) · Zbl 1056.53042
[6] V. Benci, D. Fortunato and A. Masiello, On the geodesic connectedness of Lorentzian manifolds, Math. Z., in press. · Zbl 0807.53054
[7] V. Benci and F. Giannoni, in progress.
[8] Benci, V.; Masiello, A., A Morse index for geodesics of static Lorentz manifolds, Math. ann., 293, 422-433, (1992) · Zbl 0735.58011
[9] Capozzi, A.; Fortunato, D.; Greco, C., Null geodesics on Lorentz manifolds, Preprint dip. mat. univ. Bari, (1992) · Zbl 0890.53042
[10] Fadell, E.; Husseini, A., Category of loop space of open subsets in Euclidean spaces, Nonlinear analysis T.M.A., 17, 1153-1161, (1991) · Zbl 0756.55008
[11] Fortunato, D.; Giannoni, F.; Masiello, A., The Fermat variational principle on stationary Lorentzian manifolds and applications, Preprint ist. mat. appl. univ. Pisa, (1992)
[12] Giannoni, F.; Masiello, A., On the existence of geodesics on stationary Lorentz manifolds with convex boundary, J. funct. anal., 101, 340-369, (1991) · Zbl 0756.53029
[13] F. Giannoni and A. Masiello, Morse theory for geodesics on stationary Lorentzian manifolds with convex boundary, in progress. · Zbl 0852.58016
[14] F. Giannoni and A. Masiello, Geodesics on Lorentzian product manifolds, in progress. · Zbl 0839.53046
[15] Hawking, S.W.; Ellis, G.F., The large scale structure of space-time, (1973), Cambridge Univ. Press · Zbl 0265.53054
[16] A. Helfer, Conjugate points on spacelike geodesics or pseudo-self-adjoint Morse-Sturm-Liouville systems, preprint. · Zbl 0799.58018
[17] Masiello, A., Metodi variazionali in geometria lorentziana, Ph. D. thesis, Pisa, (1991)
[18] Nash, J., The embedding problem for Riemannian manifolds, Ann. math., 63, 20-63, (1956) · Zbl 0070.38603
[19] O’Neill, B., Semi-Riemannian geometry with applications to relativity, (1983), Academic Press New York · Zbl 0531.53051
[20] Palais, R.S., Morse theory on Hilbert manifold, Topology, 2, 299-340, (1963) · Zbl 0122.10702
[21] Palais, R.S., Critical point theory and the minimax principle. global anal., (), 185-202
[22] Perlick, V., On Fermat’s principle in general relativity: I. the general case, Class. quantum grav., 7, 1319-1331, (1990) · Zbl 0707.53054
[23] Schwartz, J.T., Nonlinear functional analysis, (1969), Gordon and Breach New York · Zbl 0203.14501
[24] Seifert, H.J., Global connectivity by time-like geodesics in Lorentz spaces, Z. naturforsch., 22a, 1356-1360, (1970) · Zbl 0163.43701
[25] Uhlenbeck, K., A Morse theory for geodesics on a Lorentz manifold, Topology, 14, 69-90, (1975) · Zbl 0323.58010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.