At the boundary of some hyperbolic polyhedra. (Au bord de certains polyèdres hyperboliques.) (French) Zbl 0820.20043

Summary: The framework of this article is that of the hyperbolic groups and spaces of M. Gromov. It is motivated by the following question: how to differentiate two hyperbolic groups up to quasi-isometry? We illustrate this problem by detailing one of M. Gromov’s examples taken from ‘Asymptotic invariants for infinite groups’ (1993). We describe an infinite family of hyperbolic groups, two by two non quasi-isometric, for which the boundary is Menger’s curve. The method consists of the study of their quasi-conformal structure on the boundary, using a numerical invariant: P. Pansu’s conformal dimension.


20F65 Geometric group theory
28A80 Fractals
53C23 Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces
57M50 General geometric structures on low-dimensional manifolds
53C22 Geodesics in global differential geometry
52B99 Polytopes and polyhedra
28A75 Length, area, volume, other geometric measure theory
54E40 Special maps on metric spaces
51M10 Hyperbolic and elliptic geometries (general) and generalizations
57S25 Groups acting on specific manifolds
53C20 Global Riemannian geometry, including pinching
Full Text: DOI Numdam EuDML


[1] R.D. ANDERSON, A characterization of universal curve and a proof of its homogeneity, Annals of Math., 67 (1958), 313-324. · Zbl 0083.17607
[2] W. BALLMANN, Singular spaces of non-positive curvature, dans “Sur LES groupes hyperboliques d”après mikhael gromov”, E. Ghys, P. de la Harpe éd., Progress in Math. 83, Birkhäuser (1990).
[3] W. BALLMANN and M. BRIN, Polygonal complexes and combinatorial group theory, Geometriae Dedicata, 50 (1994), 165-191. · Zbl 0832.57002
[4] N. BENAKLI, Polyèdres hyperboliques, passage du local au global, Thèse, Université Paris-Sud (1992).
[5] M. BOURDON, Structure conforme au bord et flot géodésique d’un CAT(—1)-espace, Prépublication Université Nancy 1, à paraître dans l’Enseignement Mathématique. · Zbl 0871.58069
[6] M. COORNAERT, Mesures de patterson-Sullivan sur le bord d’un espace hyperbolique au sens de M. Gromov, Pacific Journal of Math., 159, n° 2 (1993), 241-270. · Zbl 0797.20029
[7] M. COORNAERT, T. DELZANT et A. PAPADOPOULOS, Géométrie et théorie des groupes, LES groupes hyperboliques de Gromov, Lecture Notes in Math. 1441, Springer Verlag (1991). · Zbl 0727.20018
[8] C. CHAMPETIER, Propriétés statistiques des groupes de présentation finie, Prépublication de l’Institut Fourier, n° 221 (1992). · Zbl 0847.20030
[9] H. FEDERER, Geometric measure theory, Springer (1969). · Zbl 0176.00801
[10] M. GROMOV, Hyperbolic groups, in essays in group theory, S.M. Gersten ed., Springer (1987). · Zbl 0634.20015
[11] M. GROMOV, Asymptotic invariants for infinite groups, London Math. Society, Lecture Note Series 182 (1993). · Zbl 0841.20039
[12] M. GROMOV, Infinite groups as geometric objects, in Proceedings of the International Congress of Mathematicians, Varsovia (1983), p. 385-392. · Zbl 0599.20041
[13] E. GHYS et A. HAEFLIGER, Groupes de torsion, dans “Sur LES groupes hyperboliques d”après mikhael gromov”, E. Ghys et P. de la Harpe éd., Progress in Math. 83, Birkhäuser (1990), p. 215-226.
[14] M. GROMOV and P. PANSU, Rigidity of lattices : an introduction, in “Geometric topology : recent developments”, P. de Bartolomeis, F. Tricerri eds, Lecture Notes in Math. 1504 (1991). · Zbl 0786.22015
[15] F. HAGLUND, LES polyèdres de Gromov, Thèse Université Lyon I (1992). · Zbl 0749.52011
[16] P. PANSU, Métriques de Carnot-Carathéodory et quasi-isométries des espaces symétri-ques de rang un, Annals of Math., 129 (1989), 1-60. · Zbl 0678.53042
[17] P. PANSU, Dimension conforme et sphère à l’infini des variétés à courbure négative, Annales Academiae Scientiarum Fennicae, Series A.I. Mathematica, 14 (1989), 177-212. · Zbl 0722.53028
[18] F. PAULIN, Un groupe hyperbolique est déterminé par son bord, Prépublication E.N.S. Lyon n° 96 (1993). · Zbl 0854.20050
[19] J. VÄISÄLÄ, Quasimöbius maps, J. Analyse Math., 44 (1984/1985), 218-234. · Zbl 0593.30022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.