×

zbMATH — the first resource for mathematics

Riesz decomposition in inductive limit \(C^*\)-algebras. (English) Zbl 0820.46064
Summary: As recently proved by Zhang, the projections in any \(C^*\)-algebra of real rank zero enjoy the Riesz decomposition property. Here the Riesz decomposition property is obtained for projections in several types of \(C^*\)-algebras with positive real rank, including the inductive limits with slow dimension growth introduced by Blackadar, Dǎdǎrlat, and Rørdam. Waiving the dimension restrictions, weaker forms of the Riesz decomposition property are established for general inductive limits of finite direct products of homogeneous \(C^*\)-algebras.

MSC:
46L80 \(K\)-theory and operator algebras (including cyclic theory)
46M40 Inductive and projective limits in functional analysis
19K14 \(K_0\) as an ordered group, traces
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] B. Blackadar, \(K\)-theory for operator algebras , M.S.R.I. Publ. 5 , Springer-Verlag, New York, 1986. · Zbl 0597.46072
[2] B. Blackadar, O. Bratteli, G.A. Elliott, and A. Kumjian, Reduction of real rank in inductive limits of \(C^*\)-algebras , Math. Ann. 292 (1992), 111-126. · Zbl 0738.46027 · doi:10.1007/BF01444612 · eudml:164905
[3] B. Blackadar, M. Dǎdǎrlat and M. Rørdam, The real rank of inductive limit \(C^*\)-algebras , Math. Scand. 69 (1991), 211-216. · Zbl 0776.46025 · eudml:167180
[4] B. Blackadar and D. Handelman, Dimension functions and traces on \(C^*\)-algebras , J. Func. Anal. 45 (1982), 297-340. · Zbl 0513.46047 · doi:10.1016/0022-1236(82)90009-X
[5] L.G. Brown and G.K. Pedersen, \(C^*\)-algebras of real rank zero , J. Func. Anal. 99 (1991), 131-149. · Zbl 0776.46026 · doi:10.1016/0022-1236(91)90056-B
[6] M. Dǎdǎrlat, Inductive limits of \(C^*\)-algebras related to some coverings , Indiana Univ. Math. J. 37 (1988), 135-143. · Zbl 0669.46027 · doi:10.1512/iumj.1988.37.37006
[7] M. Dǎdǎrlat, G. Nagy, A. Némethi and C. Pasnicu, Reduction of topological stable rank in inductive limits of \(C^*\)-algebras , Pacific J. Math. 153 (1992), 267-276. · Zbl 0809.46054 · doi:10.2140/pjm.1992.153.267
[8] M. Dǎdǎrlat and A. Némethi, Shape theory and (connective) \(K\)-theory , J. Operator Theory 23 (1990), 207-291. · Zbl 0755.46036
[9] G.A. Elliott, Dimension groups with torsion , Internat. J. Math. Math. Sci. 1 (1990), 361-380. · Zbl 0748.46037 · doi:10.1142/S0129167X90000198
[10] ——–, On the classification of \(C^*\)-algebras of real rank zero , I, J. reine angew. Math. 443 (1993), 179-219. · Zbl 0809.46067 · doi:10.1515/crll.1993.443.179 · crelle:GDZPPN00221105X · eudml:153565
[11] K.R. Goodearl, Von Neumann regular rings , Pitman, London, 1979. · Zbl 0411.16007
[12] ——–, Notes on real and complex \(C^*\)-algebras , Shiva, Nantwich (Cheshire), 1982. · Zbl 0495.46039
[13] ——–, Partially ordered Abelian groups with interpolation , Math. Surveys Monographs 20 , Amer. Math. Soc., Providence, 1986. · Zbl 0589.06008
[14] ——–, Notes on a class of simple \(C^*\)-algebras with real rank zero , Publ. Mat. (Barcelona) 36 (1992), 637-654. · Zbl 0812.46052 · doi:10.5565/PUBLMAT_362A92_23 · eudml:41741
[15] ——–, \(K_0\) of multiplier algebras of \(C^*\)-algebras with real rank zero , K-Theory,
[16] K.R. Goodearl and D.E. Handelman, Tensor products of dimension groups and \(K_0\) of unit-regular rings , Canadian J. Math. 38 (1986), 633-658. · Zbl 0608.16027 · doi:10.4153/CJM-1986-032-0
[17] K.R. Goodearl and R.B. Warfield, Jr., State spaces of \(K_0\) of noetherian rings , J. Algebra 71 (1981), 322-378. · Zbl 0472.16005 · doi:10.1016/0021-8693(81)90181-2
[18] D. Husemoller, Fibre bundles , (Second Ed.), Graduate Texts Math. 20 , Springer-Verlag, Berlin, 1975. · Zbl 0307.55015
[19] N. Jacobson, \(PI\)-algebras, An introduction , Lecture Notes Math. 441 , Springer-Verlag, Berlin, 1975. · Zbl 0326.16013
[20] M. Karoubi, \(K\)-theory, An introduction , Grundlehren Math. Wiss. 226 , Springer-Verlag, Berlin, 1978.
[21] M. Martin and C. Pasnicu, Some comparability results in inductive limit \(C^*\)-algebras , J. Operator Theory, · Zbl 0816.46053
[22] K. Nagami, Dimension theory , Pure Appl. Math. 37 , Academic Press, New York, 1970. · Zbl 0224.54060
[23] J.-I. Nagata, Modern general topology , North-Holland, Amsterdam, 1968. · Zbl 0181.25401
[24] C. Pasnicu, On certain inductive limit \(C^*\)-algebras , Indiana Univ. Math. J. 35 (1986), 269-288. · Zbl 0564.46052 · doi:10.1512/iumj.1986.35.35016
[25] ——–, On inductive limits of certain \(C^*\)-algebras of the form \(C(X)\otimes F\) , Trans. Amer. Math. Soc. 310 (1988), 703-714. JSTOR: · Zbl 0706.46044 · doi:10.2307/2000987 · links.jstor.org
[26] A.G. Robertson, Stable range in \(C^*\)-algebras , Math. Proc. Cambridge Phil. Soc. 87 (1980), 413-418. · Zbl 0429.46036 · doi:10.1017/S030500410005684X
[27] K. Thomsen, Inductive limits of homogeneous \(C^*\)-algebras , Proc. London Math. Soc. (3) 55 (1987), 157-180. · Zbl 0634.46048 · doi:10.1112/plms/s3-55.1.157
[28] ——–, Approximately trivial homogeneous \(C^*\)-algebras , J. reine angew. Math. 383 (1988), 109-146. · Zbl 0627.46070 · doi:10.1515/crll.1988.383.109 · crelle:GDZPPN002205203 · eudml:152994
[29] ——–, On isomorphisms of inductive limit \(C^*\)-algebras , Proc. Amer. Math. Soc. 113 (1991), 947-953. JSTOR: · Zbl 0755.46027 · doi:10.2307/2048769 · links.jstor.org
[30] ——–, Inductive limits of interval algebras : the tracial state space , Amer. J. Math. 116 (1994), 605-620. JSTOR: · Zbl 0814.46050 · doi:10.2307/2374993 · links.jstor.org
[31] L.N. Vaserstein, Stable rank of rings and dimensionality of topological spaces , Func. Anal. Appl. 5 (1971), 102-110. · Zbl 0239.16028 · doi:10.1007/BF01076414
[32] S. Zhang, A Riesz decomposition property and ideal structure of multiplier algebras , J. Operator Theory 24 (1990), 204-225. · Zbl 0747.46043
[33] ——–, \(C^*\)-algebras with real rank zero and the internal structure of their corona and multiplier algebras , Part III, Canadian J. Math. 42 (1990), 159-190. · Zbl 0721.46033 · doi:10.4153/CJM-1990-010-5
[34] ——–, Matricial structure and homotopy type of simple \(C^*\)-algebras with real rank zero , J. Operator Theory 26 (1991), 283-312. · Zbl 0861.46035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.