Eberlein, Patrick Geometry of 2-step nilpotent groups with a left invariant metric. (English) Zbl 0820.53047 Ann. Sci. Éc. Norm. Supér. (4) 27, No. 5, 611-660 (1994). In this paper the author studies the differential geometry of simply connected, 2-step, nilpotent Lie groups \(N\) with a left invariant Riemannian metric. In particular he considers properties of closed geodesics in a compact nilmanifold \(\Gamma \setminus N\), where \(\Gamma\) is a discrete cocompact subgroup of \(N\). Some of the results he obtains are the following:1) There is an obstruction (resonance) to the density in \(T_ 1(\Gamma\setminus N)\) of the set of vectors \(P\) that are periodic with respect to the geodesic flow. In particular \(P\) is not always dense in \(T_ 1(\Gamma \setminus N)\), but \(P\) is dense in \(T_ 1(\Gamma \setminus N)\) for any \(\Gamma\) if \(N\) is of Heisenberg type.2) Every free homotopy class of closed curves in \(\Gamma \setminus N\) contains a closed geodesic of largest period. Define the maximal length spectrum of \(\Gamma \setminus N\) to be the collection with multiplicities of these largest periods. If \(\Gamma \setminus N\), \(\Gamma^* \setminus N^*\) are compact 2-step nilmanifolds with the same marked maximal length spectrum, then it is shown that \(\Gamma \setminus N\), \(\Gamma^* \setminus N^*\) are equivalent up to isometry and \(\Gamma\)-almost inner automorphism. Reviewer: H.Özekes (Muǧla) Cited in 4 ReviewsCited in 80 Documents MSC: 53C22 Geodesics in global differential geometry 22E25 Nilpotent and solvable Lie groups Keywords:2-step nilpotent Lie groups; 2-step compact nilmanifolds; closed geodesics; maximal length spectrum × Cite Format Result Cite Review PDF Full Text: DOI Numdam EuDML References: [1] V. ARNOLD , Mathematical Methods of classical Mechanics (Graduate Texts in Mathematics, Vol. 60, Springer-Verlag, 1980 ). Zbl 0386.70001 · Zbl 0386.70001 [2] W. BALLMANN , personal communication. [3] R. BROOKS and C. GORDON , Isospectral Famillies of Conformally Equivalent Riemannian Metrics (Bull. Amer. Math. Soc., Vol. 23, 1990 , pp. 433-436). Article | MR 91a:58188 | Zbl 0722.58045 · Zbl 0722.58045 · doi:10.1090/S0273-0979-1990-15952-X [4] M. BERGER , P. GAUDUCHON and E. MAZET , Le spectre d’une variété Riemannienne (Springer Lecture Notes, Vol. 194, New York, 1971 ). MR 43 #8025 | Zbl 0223.53034 · Zbl 0223.53034 [5] M. COWLING , A. DOOLEY , A. KORANYI and F. RICCI , H-type Groups and Iwasawa Decompositions (Advances in Math., Vol. 87, 1991 , pp. 1-41). MR 92e:22017 | Zbl 0761.22010 · Zbl 0761.22010 · doi:10.1016/0001-8708(91)90060-K [6] J. CHEEGER and D. EBIN , Comparison Theorems in Riemannian geometry , North-Holland, Amsterdam, 1975 . MR 56 #16538 | Zbl 0309.53035 · Zbl 0309.53035 [7] D. DE TURCK , Audible and Inaudible Geometric Properties (Proc. of Conference on Differential Geometry and Topology, Rendiconti Sem. della Facolta Sci. dell’ Univ. di Cagliari, 58, 1988 -Supplement, pp. 1-26). MR 92i:58197 [8] D. DE TURCK , The Geometry of Isospectral Deformations (to appear in Proc. Sympos. Pure Math., Summer Geomety Institute, July 1990 ). [9] D. DE TURCK and C. GORDON , Isospectral Deformations I : Riemannian Structures on 2-step Nilspaces (Comm. Pure and Applied Math., Vol. 40, 1987 , pp. 367-387). MR 88m:58186 | Zbl 0649.53025 · Zbl 0649.53025 · doi:10.1002/cpa.3160400306 [10] D. DE TURCK and C. GORDON , Isospectral Deformations II : Trace Formulas, Metrics and Potentials (Comm. Pure and Applied Math., Vol. 42, 1989 , pp. 1067-1095). MR 91e:58197 | Zbl 0709.53030 · Zbl 0709.53030 · doi:10.1002/cpa.3160420803 [11] D. DE TURCK and C. GORDON , Isospectral Metrics and Finite Riemannian Coverings (Contemp. Math., Vol. 64, 1987 , pp. 79-92). MR 88d:58124 | Zbl 0646.58030 · Zbl 0646.58030 [12] D. DE TURCK , H. GLUCK , C. GORDON and D. WEBB , You Cannot Hear the Mass of a Homology Class (Comment. Math. Helvetici, Vol. 64, 1989 , pp. 589-617). MR 90k:58233 | Zbl 0694.53037 · Zbl 0694.53037 · doi:10.1007/BF02564696 [13] D. DE TURCK , H. GLUCK , C. GORDON and D. WEBB , How Can a Drum Change Shape While Sounding the Same ? , in Differential Geometry : Symposium in Honor of Manfredo do Carmo, ed. B. Lawson and K. Tenenblatt (Pitman Surveys in Pure and Applied Math., Vol. 52, 1991 , pp. 111-122). MR 93f:58236 | Zbl 0728.58039 · Zbl 0728.58039 [14] D. DE TURCK , H. GLUCK , C. GORDON and D. WEBB , How Can a Drum Change Shape While Sounding the Same ? , Part 2, in Mechanics, Analysis and Geometry, 200 Years After Lagrange, ed. M. Francaviglia, Elsevier Press, 1991 , pp. 335-358. MR 93f:58237 | Zbl 0728.58040 · Zbl 0728.58040 [15] D. DE TURCK , H. GLUCK , C. GORDON and D. WEBB , The Inaudible Geometry of Nilmanifolds (Invent. Math., Vol. 111, 1993 , pp. 271-284). MR 93k:58222 | Zbl 0779.53026 · Zbl 0779.53026 · doi:10.1007/BF01231288 [16] D. DE TURCK , H. GLUCK , C. GORDON and D. WEBB , Conformal Isospectral Deformations (Indiana Univ. Math. Jour., Vol. 41, 1992 , pp. 99-107). MR 93c:58218 | Zbl 0742.58055 · Zbl 0742.58055 · doi:10.1512/iumj.1992.41.41006 [17] P. EBERLEIN , Geometry of 2-step Nilpotent Groups with a Left Invariant Metric, II (Trans. Amer. Math. Soc., Vol. 343, 1994 , pp. 805-828). MR 95b:53061 | Zbl 0830.53039 · Zbl 0830.53039 · doi:10.2307/2154743 [18] P. EBERLEIN , Geometry of Nonpositively Curved Manifolds lecture notes, to appear, in Univ. Chicago Press. · Zbl 0883.53003 [19] C. GORDON , The Laplace Spectra Versus the Length Spectral of Riemannian Manifolds (Contemp. Math., Vol. 51, 1986 , pp. 63-80). MR 87i:58170 | Zbl 0591.53042 · Zbl 0591.53042 [20] C. GORDON , Riemannian Manifolds Isospectral on Functions but not on 1-forms (J. Diff. Geom., Vol. 24, 1986 , pp. 79-96). MR 87m:58174 | Zbl 0585.53036 · Zbl 0585.53036 [21] C. GORDON , personal communication. [22] C. GORDON and E. WILSON , Isospectral Deformations of Compact Solvmanifolds (J. Diff. Geom., Vol. 19, 1984 , pp. 241-256). MR 85j:58143 | Zbl 0523.58043 · Zbl 0523.58043 [23] C. GORDON and E. WILSON , The Spectrum of the Laplacian on Riemannian Heisenberg manifolds (Michigan Math. Jour., Vol. 33, 1986 , pp. 253-271). Article | MR 87k:58275 | Zbl 0599.53038 · Zbl 0599.53038 · doi:10.1307/mmj/1029003354 [24] E. HEINTZE , On Homogeneous Manifolds of Negative Curvature , (Math. Annalen, Vol. 211, 1974 , pp. 23-34). MR 50 #5695 | Zbl 0273.53042 · Zbl 0273.53042 · doi:10.1007/BF01344139 [25] S. HELGASON , Differential Geometry and Symmetric Spaces , Academic Press, New York, 1962 . MR 26 #2986 | Zbl 0111.18101 · Zbl 0111.18101 [26] A. KAPLAN , Riemannian Nilmanifolds Attached to Clifford Modules , (Geom. Dedicata, Vol. 11, 1981 , pp. 127-136). MR 82h:22008 | Zbl 0495.53046 · Zbl 0495.53046 · doi:10.1007/BF00147615 [27] A. KAPLAN , On the Geometry of the Groups of Heisenberg Type (Bull. London Math. Soc., Vol. 15, 1983 , pp. 35-42). MR 84h:53063 | Zbl 0521.53048 · Zbl 0521.53048 · doi:10.1112/blms/15.1.35 [28] F. KARPELEVIC , The Geometry of Geodesics and the Eigenfunctions of the Beltrami-Laplace Operator on Symmetric Spaces (Trans. Moscow Math. Soc., Tome 14, 1965 , AMS Translation, pp. 51-199). MR 37 #6876 | Zbl 0164.22202 · Zbl 0164.22202 [29] A. KORANYI , Geometric Properties of Heisenberg Type Groups , (Advances in Math., Vol. 56, 1985 , pp. 28-38). MR 86h:53050 | Zbl 0589.53053 · Zbl 0589.53053 · doi:10.1016/0001-8708(85)90083-0 [30] M. MAST , Closed Geodesics in 2-step Nilmanifolds , dissertation, Univ. of N. Carolina, 1992 . · Zbl 0818.53065 [31] J. MILNOR , Curvatures of Left Invariant Metrics on Lie Groups , (Advances in Math., Vol. 21, 1976 , pp. 293-329). MR 54 #12970 | Zbl 0341.53030 · Zbl 0341.53030 · doi:10.1016/S0001-8708(76)80002-3 [32] R. PALAIS and T. STEWART , Torus Bundles Over a Torus (Proc. Amer. Math. Soc., Vol. 12, 1961 , pp. 26-29). MR 23 #A963 | Zbl 0102.38702 · Zbl 0102.38702 · doi:10.2307/2034118 [33] M. S. RAGHUNATHAN , Discrete Subgroups of Lie Groups , Springer, New York, 1972 . MR 58 #22394a | Zbl 0254.22005 · Zbl 0254.22005 [34] N. STEENROD , Topology of Fibre Bundles , Princeton Univ. Press, Princeton, 1951 . MR 12,522b | Zbl 0054.07103 · Zbl 0054.07103 [35] E. WILSON , Isometry Groups on Homogeneous Nilmanifolds (Geom. Dedicata, Vol. 12, 1982 , pp. 337-346). MR 84a:53048 | Zbl 0489.53045 · Zbl 0489.53045 · doi:10.1007/BF00147318 [36] J. WOLF , Curvature in Nilpotent Lie Groups (Proc. Amer. Math. Soc., Vol. 15, 1964 , pp. 271-274). MR 28 #5405 | Zbl 0134.17905 · Zbl 0134.17905 · doi:10.2307/2034049 [37] J. WOLF , On locally Symmetric Spaces of Nonnegative Curvature and Certain Other Locally Symmetric Spaces (Comm. Math. Helv., Vol. 37, 1963 , p. 265-295, plus typewritten erratum). Zbl 0113.37101 · Zbl 0113.37101 · doi:10.1007/BF02566977 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.