Skew Boolean algebras and discriminator varieties. (English) Zbl 0821.06013

The authors introduce and investigate the class of skew Boolean algebras which are also meet semilattices under the natural skew lattice partial order. The class has connections with two other classes of algebras, namely implicative BCK-algebras and algebras in discriminator varieties.
Reviewer: L.Esakia (Tbilisi)


06E99 Boolean algebras (Boolean rings)
08B99 Varieties
06B99 Lattices
06A12 Semilattices
06F35 BCK-algebras, BCI-algebras
Full Text: DOI


[1] Bignall, R. J.,A non-commutative multiple-valued logic, Proceedings of the Twenty First International Symposium on Multiple-Valued Logic, IEEE Computer Society Press, (1991), 49-54.
[2] Burris, S. andSankappanavar, H. P.,A Course in Universal Algebra, Springer-Verlag, New York (1981). · Zbl 0478.08001
[3] Cornish, W. H.,Boolean skew algebras, Acta Math. Acad. Sci. Hung.36 (1980), 281-291. · Zbl 0465.06010
[4] Cornish, W. H.,On Is?ki’s BCK-algebras, in: P. Schultz, C. Praeger, R. Sullivan (eds),Algebraic Structures and Applications, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, Vol. 74 (1982), 101-122.
[5] Davey, B. A., Schumann, V. J. andWerner, H.,From the subalgebras of the square to the discriminator, Algebra Universalis28 (1991), 500-519. · Zbl 0745.08002
[6] Is?ki, K. andTanaka, S.,An introduction to the theory of BCK-algebras, Math. Japonica23 (1978), 1-26.
[7] Keimel, K. andWerner, H.,Stone duality for varieties generated by quasi-primal algebras, Memoirs of the American Mathematical Society148 (1974), 59-85. · Zbl 0283.08001
[8] Leech, J.,Skew lattices in rings, Algebra Universalis26 (1989), 48-72. · Zbl 0669.06006
[9] Leech, J.,Skew Boolean algebras, Algebra Universalis27 (1990), 497-506. · Zbl 0719.06010
[10] Leech, J.,Normal skew lattices, Semigroup Forum44 (1992), 1-8. · Zbl 0754.06004
[11] Leech, J.,The geometric structure of skew lattices, Transactions of the American Mathematical Society335 (1993), 823-842. · Zbl 0792.06008
[12] McKenzie, R.,On spectra, and the negative solution of the decision problem for algebras having a finite non-trivial model, Jour. Symb. Logic40 (1975), 186-195. · Zbl 0316.02052
[13] Murskii, V. L.,The existence of a finite basis, and some other properties, for ?almost all? finite algebras (Russian), Problemy Kilbernet.50 (1975), 43-56.
[14] Muzio, J. C. andWesselkamper, T. C.,Multiple-Valued Switching Theory, Adam Hilger, Bristol (1986). · Zbl 0668.94016
[15] Yutani, H.,On a system of axioms of a commutative BCK algebra, Math. Sem. Notes5 (1977), 255-256. · Zbl 0357.02058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.