On an embedding of Sobolev spaces. (English. Russian original) Zbl 0821.46043

Math. Notes 54, No. 3, 908-922 (1993); translation from Mat. Zametki 54, No. 3, 48-71 (1993).
Using estimates of the nonincreasing rearrangement \(f^*\) in terms of the derivatives \(D^{r_ i}_ i f= \partial^{r_ i} f/\partial x^{r_ i}_ i\), the author derives imbeddings of the anisotropic space \[ W^{r_ 1,\dots, r_ n}_ p (\mathbb{R}^ n)= \bigl\{f\in L_ p(\mathbb{R}^ n);\;D^{r_ i}_ i f\in L_ p(\mathbb{R}^ n),\;i= 1,2,\dots, n\bigr\} \] into Lorentz and Besov spaces. His results fill up some gaps, in particular for the case \(p= 1\). It is shown that for \(1\leq p< {n\over r}\) with \(r= n(1/ r_ 1+\cdots+ 1/r_ n)^{-1}\) and \(q^*= {np\over n- rp}\), \(W^{r_ 1,\dots, r_ n}_ p (\mathbb{R}^ n)\) is imbedded into the Lorentz space \(L_{q^* p}(\mathbb{R}^ n)\) and, for \(1\leq p< q< \infty\) with \({1\over p}- {1\over q}< {r\over n}\), into \(L_{q\theta} (\mathbb{R}^ n)\) for any \(\theta> 0\) and into the Besov space \(B^{\alpha_ 1,\dots, \alpha_ n}_{qp} (\mathbb{R}^ n)\) with \(\alpha_ i= r_ i\left[1- {n\over r}\left({1\over p}- {1\over q}\right)\right]\), \(i= 1,2,\dots, n\).
Reviewer: A.Kufner


46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
Full Text: DOI


[1] C. Bennett and R. Sharpley, Interpolation of Operators, Acad. Press Inc. (1988). · Zbl 0647.46057
[2] S. L. Sobolev, ?On a theorem of functional analysis,? Mat. Sb.4(46), No. 3, 471-497 (1938).
[3] O. V. Besov, V. P. Il’in, and S. M. Nikol’skii, Integral Representations of Functions and Embedding Theorems [in Russian], Nauka, Moscow (1975).
[4] V. A. Solonnikov, ?On some inequalities for functions from the classesW p (? n ,? Notes of Scientific Seminars, Leningrad Section of the Mathematics Institute, Academy of Sciences of the USSR,27, 194-210 (1972).
[5] J. Bergh and J. Löfström, ?Interpolation Spaces: an Introduction,? Springer-Verlag, Berlin-New York (1976).
[6] V. I. Kolyada, ?On relations between moduli of continuity in various metrics,? Trudy MIAN SSSR,181, 117-136 (1988).
[7] V. I. Kolyada, ?On the embedding of some classes of functions of several variables,? Sib. Mat. Zh.,14, No. 4, 766-790 (1973).
[8] S. G. Krein, Yu. I. Petunin, and E. M. Semenov, ?Interpolation of Linear Operators,? American Mathematical Society, Providence, R. I. (1982).
[9] H. Hadwiger, Lectures on Volume, Surface Area, and Isoperimetry [in Russian], Nauka, Moscow (1966). In German: Vorlesungen uber Inhalt, Oberflache und Isoperimetrie, Springer-Verlag, Berlin (1957).
[10] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, NJ (1970). · Zbl 0207.13501
[11] O’Neil, ?Convolution operators andL(p, q) spaces,? Duke Math. J.,30, 129-142 (1963). · Zbl 0178.47701
[12] L. D. Kudryavtsev and S. M. Nikol’skii, ?Spaces of differentiable functions of several variables and embedding theorems,? Itogi Nauki i Tekhniki. Sovremennye Problemy Matematiki, Moscow, VINITI, 26 (1988).
[13] E. M. Stein, ?The differentiability of functions in ? n ,? Ann. Math.,113, 383-385 (1981). · Zbl 0531.46021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.