zbMATH — the first resource for mathematics

Diophantine inequalities in imaginary quadratic number fields. (English) Zbl 0822.11050
The paper is closely related to the paper of E. Hlawka [Österreich. Akad. Wiss., Math.-Naturw. Kl., S.-Ber. II a 156, 255-262 (1948; Zbl 0036.308)] and generalizes a result from the quoted paper concerning the approximation of elements from \(\mathbb{Q}(i)\) by square roots of Gaussian integers to approximation by \(n\)-th roots of these integers.
Let \(\eta\in \mathbb{Q} (i\sqrt {d})\), \(n\geq 2\). The author shows that there exists a constant \(C= C(n,d, \eta)>0\) such that either \[ \eta- \root n\of {z}\in \mathbb{Z}(i \sqrt{d}) \quad \text{or} \quad \|\eta- \root n\of {z}\|> {C\over {| z|^{(n-1)/n}}}, \] where \(\root n\of {z}\) is the principal value of \(z\), \(\mathbb{Z}(i \sqrt {d})\) denotes the ring of integers in \(\mathbb{Q}(i \sqrt {d})\), and \(\| v\|= \min\{ | v- z|\): \(z\in \mathbb{Z} (i \sqrt{d})\}\).
11J17 Approximation by numbers from a fixed field
11J25 Diophantine inequalities
Full Text: EuDML
[1] HLAWKA E.: Über Folgen von Quadratwurzeln komplexer Zahlen. Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II Vol. 155 (1947), 255-262. · Zbl 0036.30802
[2] KOKSMA J. F.: Über die asymptotische Verteilung gewisser Zahlenfolgen modulo Eins. Nieuw Arch. Wisk. (4) 20 (1940), 179-183. · Zbl 0022.30902
[3] KOKSMA J. F.: Diophantische Approximationen. Springer, Berlin, 1936. · Zbl 0012.39602
[4] MAHLER K.: Note on the sequence \(\sqrt{n} (mod 1)\). Nieuw Arch. Wisk. (4) 20 (1940), 176-178. · Zbl 0022.30901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.