The normality of closures of conjugacy classes of matrices. (English) Zbl 0822.20045

Let \(K\) be an algebraically closed field, \(n\) a positive integer, \(x\) an \(n \times n\) matrix with entries in \(K\), let \(C(x)\) be the orbit of \(x\) under the adjoint action of \(\text{GL} (n,K)\) and let \(\overline {C(x)}\) be the Zariski closure of \(C(x)\). H. Kraft and C. Procesi [ibid. 53, 227-247 (1979; Zbl 0434.14026)], have proved that if \(K\) has characteristic 0 then \(\overline {C(x)}\) is a normal, Cohen-Macaulay variety with rational singularities. The main purpose of this paper is to prove, in arbitrary characteristic, that \(\overline {C(x)}\) is normal.


20G05 Representation theory for linear algebraic groups
14L30 Group actions on varieties or schemes (quotients)
20G15 Linear algebraic groups over arbitrary fields
14M05 Varieties defined by ring conditions (factorial, Cohen-Macaulay, seminormal)


Zbl 0434.14026
Full Text: DOI EuDML


[1] Andersen, H.H., Jantzen, J.C.: Cohomology, of induced representations for algebraic groups. Math. Ann.269, 487-525 (1984) · Zbl 0529.20027
[2] Borel, A.: Linear Algebraic Groups. New York: Benjamin 1969 · Zbl 0206.49801
[3] Chevalley, C.: Fondements de la géometrie algébrique. Paris: Secrétariat Mathématique 1958
[4] Cline, C., Parshall, B., Scott, L.L., Kallen, W. van der: Rational and generic cohomology. Invent. Math.39, 143-163 (1977) · Zbl 0346.20031
[5] De Concini, C., Eisenbud, D., Procesi, C.: Young diagrams and determinantal varieties. Invent. Math.56, 129-165 (1980) · Zbl 0435.14015
[6] De Concini, C., Procesi, C.: A characteristic free approach to invariant theory. Adv. Math.21, 330-354 (1976) · Zbl 0347.20025
[7] Donkin, S.: A filtration for rational modules. Math. Z.177, 1-8 (1981) · Zbl 0455.20029
[8] Donkin, S.: Rational representations of algebraic groups: tensor products and filtrations. In: Lecture Notes in Mahtematics. Vol. 1140 Berlin Heidelberg New York: Springer 1985 · Zbl 0586.20017
[9] Donkin, S.: On Schur algebras and related algebras II. J. Algebra111, 354-364 (1987) · Zbl 0634.20019
[10] Donkin, S.: Good filtrations of rational modules for reductive groups. Proc. Symp. Pure Math.47, 69-80 (1987) · Zbl 0648.20048
[11] Donkin, S.: Skew modules for reductive groups. J. Algebra,113, 465-479 (1988) · Zbl 0662.20032
[12] Donkin, S.: Invariants of unipotent radicals. Math. Z.198, 117-125 (1988) · Zbl 0627.14013
[13] Donkin, S.: On conjugating representations and adjoint representations of semisimple groups. Invent. Math.91, 137-145 (1988) · Zbl 0639.20021
[14] Fogarty, J.: Invariant Theory. New York: Benjamin 1969 · Zbl 0191.51701
[15] Friedlander, E.: A canonical filtration for certain rational modules. Math. Z.188, 433-438 (1984/85) · Zbl 0545.20032
[16] Friedlander, E., Parshall, B.: Cohomology, of Lie algebras and algebraic groups. Am. J. Math.108, 235-253 (1986) · Zbl 0601.20042
[17] Grosshans, F.: Observable subgroups and Hilbert’s fourteenth problem. Am. J. Math.95, 229-253 (1973) · Zbl 0309.14039
[18] Haboush, W.: Reductive groups are geometrically reductive. Ann. Math.102, 67-83 (1975) · Zbl 0316.14016
[19] Hesselink, W.: The normality of closures of orbits in a Lie algebra. Comm. Math. Helv.54, 105-110 (1979) · Zbl 0395.14014
[20] Humphreys, J.E.: Linear algebraic groups. In: Graduate Texts in Mathematics. Vol. 21 Berlin Heidelberg new York: Springer 1975. · Zbl 0325.20039
[21] Jantzen, J.C.: Representations of Algebraic Groups. In Pure and Applied Mathematics. Vol. 131. New York: Academic Press 1987 · Zbl 0654.20039
[22] Jantzen, J.C.: Support varieties of Weyl modules. Bull. Lond. Math. Soc.78, 238-244 (1987) · Zbl 0623.17008
[23] Koppinen, M.: Good bimodule filtrations for coordinate rings J. Lond. Math. Soc.30, 244-250 (1984) · Zbl 0566.20020
[24] Kraft, H., Procesi, C.: Closures of conjugacy classes of matrices are normal. Invent. Math.53, 227-247 (1979) · Zbl 0434.14026
[25] Macdonald, I.G.: Symmetric functions and Hall polynomials. Oxford: Oxford University Press 1979 · Zbl 0487.20007
[26] Mathieu, O.,: Filtrations ofG-modules, Preprint E.N.S.
[27] Matsumura, H.: Commutative algebra. 2nd Edn. New York, Benjamin 1980 · Zbl 0441.13001
[28] Steinberg, R.: Conjugacy Classes in Algebraic Groups. In: Lecture Notes in Mathematics. Vol. 366, Berlin Heidelberg, New York: Springer 1975 · Zbl 0312.20026
[29] Weyl, H.: The classical groups. Princeton: Princeton University Press 1946 · Zbl 1024.20502
[30] Weyman, J.: The equation of conjugacy classes of nilpotent matrices. Preprint, Northeastern University 1988
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.