×

zbMATH — the first resource for mathematics

On elliptic tempered characters. (English) Zbl 0822.22011
Let \(G\) be a connected reductive algebraic group over a local field of characteristic zero (either real or \(p\)-adic). This paper considers the characters of elliptic tempered representations of \(G\).
The author defines a family of virtual tempered characters, (each the trace of an induced representation twisted by an intertwining operator). Part of the local trace formula can be expanded in terms of these virtual characters, and this leads to an expression of the (noninvariant) trace formula as a local trace formula whose terms are all invariant.
If \(f\) is a cuspidal function, \(\gamma\) a \(G\)-regular element in the elliptic set of a Levi subgroup \(M\), then the author shows how to expand the orbital integral \(I_ M(\gamma, f)\) in terms of the elliptic tempered virtual characters. There is a parallel expansion for some related distributions in terms of truncated virtual characters.
These results are then used to establish orthogonality relations for the virtual tempered characters and also a local proof of Kazhdan’s Theorem that invariant orbital integrals are supported on characters. There are also applications to certain contour integrals and residues.
Reviewer: J.Repka (Toronto)

MSC:
22E50 Representations of Lie and linear algebraic groups over local fields
11F72 Spectral theory; trace formulas (e.g., that of Selberg)
22E35 Analysis on \(p\)-adic Lie groups
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Arthur, J., The characters of discrete series as orbital integrals.Invent. Math. 32 (1976), 205–261. · Zbl 0359.22008
[2] –, The trace formula in invariant form.Ann. of Math., 114 (1981), 1–74. · Zbl 0495.22006
[3] –, The characters of supercuspidal representations as weighted orbital integrals.Proc. Indian Acad. Sci. 97 (1987), 3–19. · Zbl 0652.22009
[4] –, The invariant trace formula I. Local theory.J. Amer. Math. Soc., 1 (1988), 323–383. · Zbl 0682.10021
[5] –, The invariant trace formula II. Global theory.J. Amer. Math. Soc., 1 (1988), 501–554. · Zbl 0667.10019
[6] –, Intertwining operators and residues I. Weighted characters.J. Funct. Anal., 84 (1989), 19–84. · Zbl 0679.22011
[7] –, Intertwining operators and residues II. Invariant distributions.Compositio Math., 70 (1989), 51–99. · Zbl 0936.22012
[8] Arthur, J., Towards a local trace formula, inAlgebraic Analysis, Geometry and Number Theory, pp. 1–24. The Johns Hopkins University Press, 1989.
[9] Arthur, J., Unipotent automorphic representations: Global motivation, inAutomorphic Forms, Shimura Varieties, and L-functions, Vol. I, pp. 1–75. Academic Press, 1990.
[10] Arthur, J., Some problems in local harmonic analysis, inHarmonic Analysis on Reductive Groups (W. Barker and P. Sally, eds.), pp. 57–58. Birkhäuser, 1991.
[11] –, A local trace formula.Inst. Hautes Études Sci. Publ. Math., 73 (1991), 5–96. · Zbl 0741.22013
[12] Bernstein, J., Deligne, P. &Kazhdan, D., Trace Paley-Wiener theorem for reductivep-adic groups.J. Analyse Math., 47 (1986), 180–192. · Zbl 0634.22011
[13] Clozel, L., Invariant harmonic analysis on the Schwartz space of a reductivep-adic group, inHarmonic Analysis on Reductive Groups (W. Barker and P. Sally, eds.), pp. 101–121. Birkhäuser, 1991. · Zbl 0760.22023
[14] Clozel, L. &Delorme, P., Le théorème de Paley-Wiener invariant pour les groupes de Lie reductif II.Ann. Sci. École Norm. Sup. (4), 23 (1990), 193–228. · Zbl 0724.22012
[15] Casselman, W., Characters and Jacquet modules.Math. Ann., 230 (1977), 101–105. · Zbl 0337.22019
[16] Curtis, C. & Reiner, I.,Representation Theory of Finite Groups and Associative Algebras. Interscience Publishers, 1962. · Zbl 0131.25601
[17] Harish-Chandra, A formula for semisimple Lie groups.Amer. J. Math., 79 (1957), 733–760. · Zbl 0080.10201
[18] Harish-Chandra,Harmonic Analysis on Reductive p-adic Groups. Lecture Notes in Math., 162. Springer-Verlag, 1970. · Zbl 0202.41101
[19] –, Harmonic analysis on real reductive Groups II. Wave packets in the Schwartz space.Invent. Math., 36 (1976), 1–55. · Zbl 0341.43010
[20] –, Harmonic analysis on real reductive groups III. The Maass-Selberg relations and the Plancherel formula.Ann. of Math., 104 (1976), 117–201. · Zbl 0331.22007
[21] Harish-Chandra, The Plancherel formula for reductivep-adic groups, inCollected Papers, Vol. IV, pp. 353–367. Springer-Verlag.
[22] Harish-Chandra, Supertempered distributions on real reductive groups, inCollected Papers, Vol. IV, pp. 447–453. Springer-Verlag.
[23] Hecht, H. &Schmid, W., Characters, asymptotics andn-homology of Harish-Chandra modules.Acta Math., 151 (1983), 49–151. · Zbl 0523.22013
[24] Kazhdan, D., Cuspidal geometry onp-adic groups.J. Analyse Math., 47 (1986), 1–36. · Zbl 0634.22009
[25] Keys, D.,L-indistinguishability andR-groups for quasi-split groups: Unitary groups of even dimension.Ann. Sci. École Norm. Sup. (4), 20 (1987), 31–64. · Zbl 0634.22014
[26] Knapp, A. W., Commutativity of intertwining operators for semisimple groups.Compositio Math., 46 (1982), 33–84. · Zbl 0488.22027
[27] Knapp, A. W. &Stein, E. M., Singular integrals and the principal series IV.Proc. Nat. Acad. Sci. U.S.A., 72 (1975), 2459–2461. · Zbl 0304.22012
[28] –, Intertwining operators for semisimple groups II.Invent. Math., 60 (1980), 9–84. · Zbl 0454.22010
[29] Knapp, A. W. & Zuckerman, G., Normalizing factors, tempered representations, andL-groups, inAutomorphic Forms, Representations, and L-functions. Proc. Sympos. Pure Math., 33 (1979), 93–105. Amer. Math. Soc., Providence. · Zbl 0414.22017
[30] Labesse, J.-P., Pseudo-coefficients très cuspidaux etK-théorie.Math. Ann., 291 (1991). 607–616. · Zbl 0789.22028
[31] Langlands, R. P.,On the Functional Equations Satisfied by Eisenstein Series. Lecture Notes in Math., 544. Springer-Verlag, 1976. · Zbl 0332.10018
[32] Langlands, R. P., Representations of real algebraic groups, inRepresentation Theory and Harmonic Analysis on Semisimple Lie Groups. Mathematical Surveys and Monographs, 31. Amer. Math. Soc., 1989.
[33] Laumon, G., Letters to R. Kottwitz (Dec. 2, 1988; Dec. 7, 1988) and to J. Arthur (Feb. 24, 1989; Mar. 7, 1989).
[34] Laumon, G., Cohomology with compact supports of Drinfeld modular varieties, Parts I and II. Preprints.
[35] Shahidi, F., A proof of Langlands’ conjecture on Plancherel measures: Complementary series forp-adic groups.Ann. of Math., 132 (1990), 273–330. · Zbl 0780.22005
[36] Silberger, A.,Introduction to Harmonic Analysis on Reductive p-adic Groups. Mathematical Notes, Princeton University Press, 1979. · Zbl 0458.22006
[37] –, The Knapp-Stein dimension theorem forp-adic groups.Proc. Amer. Math. Soc., 68 (1978), 243–246; Correction.Proc. Amer. Math. Soc., 76 (1979), 169–170. · Zbl 0348.22007
[38] Waldspurger, J.-L., Intégrales orbitales sphériques pourGL(N) sur un corpsp-adique.Astérisque, 171–172 (1989), 279–337.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.