×

zbMATH — the first resource for mathematics

On nonconvex valued Volterra integral inclusions in Banach spaces. (English) Zbl 0822.45008
The author considers the Volterra integral inclusion \[ x(t)\in p(t)+ \int^ t_ 0 U(t, s)\text{ ext } F(s, x(s)) ds,\quad t\in [0, b],\tag{*} \] where \(\text{ext } F(s, x(s))\) denotes the extremal points in a separable Banach space \(X\). The existence of a solution \(x(\cdot)\in C([0, b], X)\) to (*) is proven if several hypotheses hold. The result generalizes a previous existence theorem of the author in the same journal. The theorem is used to obtain a bang-bang principle for controlled Volterra integral equations.

MSC:
45N05 Abstract integral equations, integral equations in abstract spaces
47H05 Monotone operators and generalizations
45G10 Other nonlinear integral equations
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] J. Banas and K. Goebel: Measures of Noncompactness in Banach Spaces. Marcel-Dekker, New York, 1980. · Zbl 0441.47056
[2] M. Banamara: Points Extremaux, Multi-applications et Fonctionelles Intégrales. Thèse du 3ème cycle, Universtité de Grenoble, 1975.
[3] N. Bourbaki: Expaces Vectoriels Topologiques. Hermann, Paris, 1967.
[4] A. Bressan and G. Colombo: Extensions and selections of maps with decomposable values. Studia Math. 90 (1988), 69-86. · Zbl 0677.54013
[5] A.Bulgakov and L. Lyapin: Some propersties of the set of solutions of Volterra-Hammerstein integral inclusions. Differential Equations 14 (1979), 1043-1048. · Zbl 0433.45018
[6] P.-V. Chuong: Existence of solutions for random multivalued Volterra integral inclusions. J. Integral Egns. 7 (1984), 143-173. · Zbl 0553.60061
[7] A. Friedman: Parabolic Partial Differential Equations. Krieger, New York, 1976.
[8] H.-P. Heinz: Theorems of Ascoli-type involving measures of noncompactness. Nonl. Anal. - TMA 5 (1981), 277-286. · Zbl 0456.54007
[9] F. Hiai and H. Umegaki: Integrals, conditional expectations and martingales of multivalued functions. J. Multiv. Anal. 7 (1977), 149-183. · Zbl 0368.60006
[10] C. Himmelberg: Measurable relations. Fund. Math. 87 (1975), 59-71. · Zbl 0296.28003
[11] D. Kandilakis and N.S. Papageorgiou: On the properties of the Aumann integral with applictions to differential inclusions and control systems. Czech. Math. Jour. 39 (1989), 1-15. · Zbl 0677.28005
[12] M. Kisielewicz: Multivalued differential equations in a separable Banach space. J. Optim. Theory Appl. 37 (1982), 239-249. · Zbl 0458.34008
[13] E. Klein and A. Thompson: Theory of Correspondences. Wiley, New York, 1984.
[14] G. Ladas and V. Laksmikantham: Differential Equations in Abstract Spaces. Acad. Press, New York, 1972.
[15] H. Mönch: Boundary vale problems for ordinary differential equations of second order in Banach spaces. Nonl. Anal. - TMA 4 (1980), 985-999. · Zbl 0462.34041
[16] N.S. Papageorgiou: On the theory of Banach space valued multifunctions I: Interation and conditional expectations. J. Multiv. Anal 17 (1985), 185-206. · Zbl 0579.28009
[17] N.S. Papageorgiou: On multivalued evolution equations and differential inclusions in Banach spaces. Comm. Math. Univ. S. P. 36 (1987), 21-39. · Zbl 0641.47052
[18] N.S. Papageorgiou: Convergence theorems for Banach space valued integrable multifunctions. Intern. J. Math and Math Sci. 10 (1987), 433-442. · Zbl 0619.28009
[19] N.S. Papageorgiou: On measurable multifunctions with application to random multivalued equations. Math. Japonica 32 (1987), 437-464. · Zbl 0634.28005
[20] N.S. Papageorgiou: Volterra integral inclusions in Banach spaces. J. Integral Equations and Appl. 1 (1988), 65-81. · Zbl 0659.45010
[21] N.S. Papageorgiou: Decomposable sets in the Lebesgue-Bochner spaces. Comm. Math. Univ. S. P. 37 (1988), 49-62. · Zbl 0679.46032
[22] N.S. Papageorgiou: On integral inclussions of Volterra type in Banach spaces. Czechoslovak Math. J. 42 (117) (1992), 693-714. · Zbl 0781.45014
[23] R. Ragimkhanov: The existence of solutions to an integral equation with multivalued right-hand side. Siberian Math. Journ. 17 (1976), 533-536. · Zbl 0353.45019
[24] E. Schecter: Evolution generated by continuous dissipative plus compact operator. Bull. London Math. Soc. 13 (1981), 303-308. · Zbl 0443.34061
[25] S. Szufla: On the existence of solutions of Volterra integral equations in Banach space. Bull. Polish Acad. Sci. 22 (1974), 1211-1213. · Zbl 0329.45003
[26] H. Tanabe: Equations of Evolution. Pitman, London, 1977. · Zbl 1098.83528
[27] A. Tolstonogov: Extreme continuous selectors of multivalued maps and the bang-bang principle for evolution inclusions. Soviet Math. Dokl. 317 (1991), 1-8. · Zbl 0784.54024
[28] D. Wagner: Survey of measurable selection theorems. SIAM J. Contr. Optim. 15 (1977), 859-903. · Zbl 0407.28006
[29] A. Wilansky: Modern Methods in Topological Vector Spaces. (1978), McGraw-Hill, New York. · Zbl 0395.46001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.