×

zbMATH — the first resource for mathematics

An error estimate for a finite volume scheme for a diffusion-convection problem on a triangular mesh. (English) Zbl 0822.65085
A finite volume scheme for a diffusion-convection equation is considered using a triangular mesh satisfying certain non-degenerating conditions instead of the usual rectangular mesh. The aim is that the obtained scheme will be robust and useful for any shape of the physical domain. An error estimate is obtained directly without any reference to the finite element techniques. For a numerical experiment a diffusion operator is considered.

MSC:
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] , and , Condensation de la matrice de masse pour certaines méthodes éléments finis mixtes, liens avec les volumes finis, Congrès National d’Analyse Numérique, Les Karellis, 1994.
[2] Cai, SIAM J. Numer. Anal. 28 (1991)
[3] Champier, Numer. Math. 66 (1993)
[4] Simulation Numérique de l’Interaction Arc Electrique–Ecoulement Gazeux dansles Disjoncteurs Moyenne et Haute Tension, Ph.D. Thesis, INPG, Grenoble, France.
[5] See also and , :A Van Leer finite volume scheme for the Euler equations on unstructured meshes, M2AN, M2AN, 27, 2, 183 (1993).
[6] Cockburn, Math. Comput.
[7] Eymard, M2AN 27 pp 843– (1993)
[8] and , ”Traitement des changements de phase dans la modélisation de gisements pétroliers”, Journées numériques de Besançon (1991).
[9] Eymard, Ph. Ciarlet
[10] Faille, Comp. Meth. Appl. Mech. Engrg. 100 (1992)
[11] Modélisation Bidimensionnelle de la Genèse et la Migration des Hydrocarbures dans un Bassin Sédimentaire, Ph.D. thesis, University of Grenoble, France, 1992.
[12] , and , ”Des mathématiciens découvrent les volumes finis”, Matapli, (April 1991).
[13] Fiard, Comput. Meth. Appl. Mech. Engin. 115 (1994) · doi:10.1016/0045-7825(94)90065-5
[14] Forsyth, SPE 18415 85 (1989)
[15] Forsyth, SIAM J. Sci. Stat. Comput. 12 (1991)
[16] Forsyth, Appl. Num. Math. 4 (1988)
[17] ”An introduction to finite volume methods”, Cours CEA/EDF/INRIA, (October 1992).
[18] , and , ”Résolution numérique des equations de Navier-Stokes pour un fluide compressible en maillage triangulaire”, INRIA report no 1033, 1989.
[19] Gallouët, J. of Diff. Int. Equations
[20] and , ”Error estimate of a finite volume scheme for a nonlinear hyperbolic equation,” in preparation.
[21] ”Traitement numérique de la migration des hydrocarbures et de la compaction dans un bassin sédimentaire. Application d’un schéma de type élements finis- volume finis pondérés,” Rapport de DESS, Université de Savoie, 1993.
[22] ”Comparaison de diverses méthodes numériques pour la résolution de certains systèmes d’équations aux dérivées partielles,” Rapport de DEA, Université de Grenoble 1, 1994.
[23] Manteufel, Math. Comp. 47 (1986)
[24] Numerical Heat Transfer and Fluid Flow, Series in Computational Methods in Mechanics and Thermal Sciences, and , Eds., McGraw Hill, New York, 1980.
[25] Selmin, Comp. Meth. in Appl. Mech. Engin. 102 (1993) · Zbl 0767.76058 · doi:10.1016/0045-7825(93)90143-L
[26] and , ”Mathematical and numerical properties of control-volume finite-element scheme for reservoir simulation,” paper SPE 25267 presented at the 12th symposium on reservoir simulation, New Orleans, 1993.
[27] Vila, M2AN 28 (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.