×

zbMATH — the first resource for mathematics

High frequency approximation of integral equations modeling scattering phenomena. (English) Zbl 0822.65124
The author presents a new way of discretizing integral equations for scattering problems at high frequencies. This method keeps the interests of the integral equations since the accuracy is controlled and the matrix is computed once for all the incident waves. Next, the accuracy of the considered approximation is analyzed. Moreover, the complexity of the method presented here for the number of operations as for the memory requirement is evaluated.
Reviewer: L.Hącia (Poznań)

MSC:
65R20 Numerical methods for integral equations
78A45 Diffraction, scattering
45B05 Fredholm integral equations
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] G. BEYLKIN, R. COIFMAN and V. ROKHLIN, 1991, Fast wavelet transforms and numerical algorithms I, Comm. Pure Appl. Math., XLIV, pp. 141-183. Zbl0722.65022 MR1085827 · Zbl 0722.65022 · doi:10.1002/cpa.3160440202
[2] F. X. CANNING, 1992, Sparse approximation for solving integral equations with oscillatory kernels, Siam J. Sci. Stat. Comput., 13. Zbl0749.65093 MR1145176 · Zbl 0749.65093 · doi:10.1137/0913004
[3] J. CHAZARAIN and A. PIRIOU, 1981, Introduction à la théorie des équations aux dérivées partielles linéaires, Paris, Gauthier-Villars. Zbl0446.35001 MR598467 · Zbl 0446.35001
[4] P. COLTON and R. KRESS, 1993, Integral equation method in scattering theory, Pure and Applied Mathematics. Zbl0522.35001 · Zbl 0522.35001
[5] A. DE LA BOURDONNAYE, 1991, Accélération du traitement numérique de l’équation de Helmholtz par équations intégrales et parallélisation, thèse de doctorat, Ecole polytechnique, Palaiseau, France.
[6] J. J. DUISTERMAAT, 1973, Fourier integral operators, Courant Institute of Mathematical Sciences, New York. Zbl0272.47028 MR451313 · Zbl 0272.47028
[7] V. FOCK, 1946, The distribution of currents induced by a plane wave on the surface of a conductor, J. Phys., 10, 130-136. Zbl0063.01396 MR17661 · Zbl 0063.01396
[8] V. GUILLEMIN and D. SCHAEFFER, 1973, Remarks on a paper of D. Ludwig, Bull, of the A.M.S. 79. Zbl0256.35008 MR410050 · Zbl 0256.35008 · doi:10.1090/S0002-9904-1973-13176-3
[9] M. HAMDI, 1981, Une formulation variationnelle par équations pour la résolution de l’équation de Helmholtz avec des conditions aux limites mixtes, C. R. Acad. Sc, Série II, t. 292, 17-20. Zbl0479.76088 MR637242 · Zbl 0479.76088
[10] D. LUDWIG, 1967, Uniform asymptotic expansion of the field scattered by a convex object at high frequencies, Comm. Pure Appl. Math., XX, 103-138. Zbl0154.12802 MR204032 · Zbl 0154.12802 · doi:10.1002/cpa.3160200103
[11] [11] J. NEDELEC, 1980, Mixed finite elements in R3, Numer. Mathematik, 35. Zbl0419.65069 · Zbl 0419.65069 · doi:10.1007/BF01396415 · eudml:186293
[12] A. F. NIKIFOROV and V. B. UVAROV, 1988, Special fonctions of mathematical physics, Birkhäuser, Basel Boston. Zbl0624.33001 MR922041 · Zbl 0624.33001
[13] S. RAO, D. WILTON and A. GLISSON, 1982, Electromagnetic scattering by surface of arbitrary shape, I.E.E.E. Trans. on antennas and propagation, AP-30, 409-418.
[14] V. ROKHLIN, 1990, Rapid solution of integral equations of scattering theory in two dimensions, Journal of Computational Physics, 86, 414-439. Zbl0686.65079 MR1036660 · Zbl 0686.65079 · doi:10.1016/0021-9991(90)90107-C
[15] B. STUPFEL, R. L. MARTRET, P. BONNEMASON and B. SCHEURER, 1991, Combined boundary-element and finite-element method for the scattering problem by axisymmetrical penetrable objects, in Mathematical and numerical aspects of wave propagation phenomena, G. Cohen, L. Halpern and P. Joly, eds., SIAM, 332-341. MR1106007
[16] M. TAYLOR, 1981, Pseudo differential operators, vol. 34 of Princeton mathematical series, Princeton University Press, Princeton. Zbl0453.47026 · Zbl 0453.47026
[17] G. N. WATSON, 1944, A treatise on Bessel functions, Cambridge University Press, 1944. MR10746 JFM48.0412.02 · JFM 48.0412.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.