×

On nilpotent Lie algebras having a torus of derivations. (Sur les algèbres de Lie nilpotentes admettant un tore de dérivations.) (French) Zbl 0823.17009

Let \({\mathfrak g}\) be a complex nilpotent Lie algebra of dimension \(n\). For \(x \in {\mathfrak g} - [{\mathfrak g}, {\mathfrak g}]\) let \(c(x)\) be the set of dimensions of Jordan blocks of ad \(x\) in decreasing order. Let \(c({\mathfrak g}) = \text{Sup} (c(x),x \in {\mathfrak g} - [{\mathfrak g}, {\mathfrak g}])\) (relative to the lexicographical order). Then \({\mathfrak g}\) is said to be filiform if \(c ({\mathfrak g})\) is maximal, i.e., \((n - 1,1)\).
The authors classify the filiform Lie algebras admitting a nonzero diagonalizable derivation. Then, in a section on characteristically nilpotent algebras (i.e., algebras with all derivations nilpotent), they prove that for dimensions greater than 8 any algebraic irreducible component of the variety of complex nilpotent filiform laws of Lie algebras contains an open set whose elements are characteristically nilpotent laws.
Reviewer: G.Brown (Boulder)

MSC:

17B30 Solvable, nilpotent (super)algebras
17B40 Automorphisms, derivations, other operators for Lie algebras and super algebras
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] [A-G] Ancochea Bermudez, J.M., Goze, M.: Le rang du système linéaire des racines d’une algèbre de Lie résoluble rigide. Comm. in Algebra20 (3), (1992), 875–887 · Zbl 0748.17005
[2] [B] Benoist, Y.: Une nilvariété non affine. Preprint Paris (1992)
[3] [C] Carles, R.: Sur les algèbres de Lie caractéristiquement nilpotentes. Preprint Univ. Poitiers (1984)
[4] [Di] Dixmier, J.: Sur les représentations unitaires des groupes de Lie nilpotents III. Canad. J. Math.10 (1958) 321–348 · Zbl 0100.32401
[5] [D-L] Dixmier, J., Lister, W.G.: Derivations of nilpotent Lie algebras. Proc. Amer. Math. Soc.8 (1957) 155–158 · Zbl 0079.04802
[6] [Dy] Dyer, J.L.: A nilpotent Lie algebra with nilpotent automorphism group. Bull. Amer. Math. Soc.76 (1970) 52–56 · Zbl 0198.05402
[7] [F] Favre, G.: Une algèbre de Lie caractéristiquement nilpotente de dimension 7. C.R.A.Sc. Paris, Série A,274 (1972) 1338–1339 · Zbl 0236.17003
[8] [H1] Hakimjanov, Y.: Algèbres de Lie caractéristiquement nilpotentes. Math. Sb.181 (1990) 642–655 et Math. USSR.70, 1 (1991)
[9] [H2] Hakimjanov, Y.: Variétés des lois d’algèbres de Lie nilpotentes. Geom. Dedicata40 (1991) 269–295
[10] [H-R] Kraft, H.P., Riedtmann, Ch.: Geometry of representations of quivers. In Representations of algebras (Durham 1985). London Math. Soc. Lecture Notes116. Cambridge Univ. Press, Cambridge-New-York 1986. · Zbl 0632.16019
[11] [L-T] Leger, G., Tôgô, S.: Caracteristically nilpotent Lie algebras. Duke Math. J.26 (1959) 623–628 · Zbl 0101.02402
[12] [L] Luks, M.: What is the typical nilpotent Lie algebra? in Computers in non associative rings and algebras. Acad. Press, New-York p 189–207, 1977.
[13] [M] Morozov, V.: Classification of nilpotent Lie algebras of sixth order. Izv. Vyssh. U.Zaved. Mat.4(5) (1958) 161–171 · Zbl 0198.05501
[14] [Mo] Mostow, G.D.: Fully reductible subgroups of algebraic groups. Amer. J. Math.78 (1956) · Zbl 0073.01603
[15] [V] Vergne, M.: Cohomologie des algèbres de Lie nilpotentes. Application à l’étude de la variété des algèbres de Lie nilpotentes. Bull. Soc. Math. France98 (1970) 81–116 · Zbl 0244.17011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.