×

The natural operators lifting 1-forms on manifolds to the bundles of \(A\)- velocities. (English) Zbl 0823.58004

Let \(A\) denote a Weil algebra on \(p\) variables. In this paper it is shown that for any \(n\)-manifold with \(n\geq p+ 2\) the set of all natural operators \(T^*\to T^* T^ A\) is a free finitely generated module over a ring canonically dependent on \(A\).
Reviewer: A.Dimca (Bordeaux)

MSC:

58A20 Jets in global analysis

References:

[1] Gancarzewicz, J., Mahi, S.: Lifts of 1-forms to the tangent bundle of higher order. Czech. Math. J.40(115), 397-407 (1990). · Zbl 0729.58003
[2] Gancarzewicz, J., Mikulski, W. M., Pogoda, Z.: Lifts of some tensor fields and connections to product preserving functor. Nagoya Math. J. (to appear). · Zbl 0813.53010
[3] Kol??, I., Michor, P. W., Slov?k, J.: Natural Operations in Differential Geometry. Berlin: Springer. 1993. · Zbl 0782.53013
[4] Kurek, J.: On the first order natural operators transforming 1-forms on a manifold to linear frame bundle. Demonstratio Math.26, 287-293 (1993). · Zbl 0791.53018
[5] Kurek, J.: On the first order natural operators transforming 1-forms on a manifold to the tangent bundle. Ann. U.M.C.S.43, 79-83 (1989). · Zbl 0739.58001
[6] Mikulski, W. M.: Some natural operations on vector fields. Rend. Math. (Serie VII)12, 783-803 (1992). · Zbl 0766.58005
[7] Mikulski, W. M.: Some natural constructions on vector fields and higher order cotangent bundles. Mh. Math.117, 107-119 (1994). · Zbl 0796.58002 · doi:10.1007/BF01299315
[8] Mikulski, W. M.: Natural transformations transforming functions and vector fields to functions on some natural bundles. Math. Bohemica117, 217-223 (1992). · Zbl 0810.58004
[9] Mikulski, W. M.: Natural transformations transforming vector fields into affinors on the extendedr-th order tangent bundles. Arch. Math. Brno29, 59-70 (1993). · Zbl 0804.58005
[10] Mikulski, W. M.: Natural liftings of foliations to the tangent bundle. Math. Bohemica117, 409-414 (1992). · Zbl 0774.53019
[11] Morimoto, A.: Prolongations of connections to bundles of infinitely near points. J. Diff. Geom.11, 479-498 (1976). · Zbl 0358.53013
[12] Morimoto, A.: Liftings of tensor fields and connections to tangential fibre bundles of higher order. Nagoya Math. J.40, 85-97 (1970). · Zbl 0208.50102
[13] Weil, A.: Theorie des points proches sur les varietes differentiables. In: G?om?trie Differentielle. Colloque du C.N.R.S. Strasbourg, pp. 111-117, 1953.
[14] Yano, K.;Ishihara, S.: Differential geometry in tangent bundles. Kodai Math. Sem. Rep.18, 271-292 (1966). · Zbl 0146.17702 · doi:10.2996/kmj/1138845273
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.