Niederreiter, Harald On a new class of pseudorandom numbers for simulation methods. (English) Zbl 0823.65010 J. Comput. Appl. Math. 56, No. 1-2, 159-167 (1994). The explicit inversive congruential method for generating pseudorandom numbers, introduced previously by J. Eichenauer-Herrmann [Math. Comput. 60, No. 201, 375-384 (1993; Zbl 0795.65002)], is discussed. The resulting pseudorandom numbers possess optimal nonlinearity property and show the best possible behavior under the lattice test. It is guaranteed that they pass the serial test and thus have desirable independence properties. The discrepancy bounds are in good accordance with the law of the iterated logarithm for discrepancies.The method can easily generate a large number of parallel streams of pseudorandom numbers. The numbers satisfy the requirements of W. F. Eddy [J. Comput. Appl. Math. 31, No. 1, 63-71 (1990; Zbl 0703.65007)] on random number generators for parallel processors. Reviewer: V.Burjan (Praha) Cited in 2 ReviewsCited in 11 Documents MSC: 65C10 Random number generation in numerical analysis 65Y05 Parallel numerical computation 11K45 Pseudo-random numbers; Monte Carlo methods Keywords:parallel computation; explicit inversive congruential method; pseudorandom numbers; lattice test; serial test; random number generators Citations:Zbl 0795.65002; Zbl 0703.65007 × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Cochrane, T., On a trigonometric inequality of Vinogradov, J. Number Theory, 27, 9-16 (1987) · Zbl 0629.10030 [2] Eddy, W. F., Random number generators for parallel processors, J. Comput. Appl. Math., 31, 63-71 (1990) · Zbl 0703.65007 [3] Eichenauer, J.; Grothe, H.; Lehn, J., Marsaglia’s lattice test and non-linear congruential pseudo random number generators, Metrika, 35, 241-250 (1988) · Zbl 0653.65006 [4] Eichenauer, J.; Lehn, J., A non-linear congruential pseudo random number generator, Statist. Papers, 27, 315-326 (1986) · Zbl 0607.65001 [5] Eichenauer-Herrmann, J., Inversive congruential pseudorandom numbers avoid the planes, Math. Comp., 56, 297-301 (1991) · Zbl 0712.65006 [6] Eichenauer-Herrmann, J., Inversive congruential pseudorandom numbers: a tutorial, Internat. Statist. Rev., 60, 167-176 (1992) · Zbl 0766.65002 [7] Eichenauer-Herrmann, J., Statistical independence of a new class of inversive congruential pseudorandom numbers, Math. Comp., 60, 375-384 (1993) · Zbl 0795.65002 [8] Flahive, M.; Niederreiter, H., On inversive congruential generators for pseudorandom numbers, (Mullen, G. L.; Shiue, P. J.-S., Finite Fields, Coding Theory, and Advances in Communications and Computing (1992), Marcel Dekker: Marcel Dekker New York), 75-80 · Zbl 0790.11058 [9] Knuth, D. E., The Art of Computer Programming, Vol. 2: Seminumerical Algorithms (1981), Addison-Wesley: Addison-Wesley Reading, MA · Zbl 0477.65002 [10] Moreno, C. J.; Moreno, O., Exponential sums and Goppa codes: I, Proc. Amer. Math. Soc., 111, 523-531 (1991) · Zbl 0716.94010 [11] Niederreiter, H., Remarks on nonlinear congruential pseudorandom numbers, Metrika, 35, 321-328 (1988) · Zbl 0663.65005 [12] Niederreiter, H., Random Number Generation and Quasi-Monte Carlo Methods (1992), SIAM: SIAM Philadelphia, PA · Zbl 0761.65002 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.