Brandts, Jan H. Superconvergence and a posteriori error estimation for triangular mixed finite elements. (English) Zbl 0823.65103 Numer. Math. 68, No. 3, 311-324 (1994). The author proves a superconvergence result for the vector variable of a mixed finite element approximation, which uses (lowest order) triangular Raviart-Thomas type elements. Uniform triangulation is assumed. The result allows the construction of an a posteriori error estimator. Reviewer: A.J.Meir (Auburn) Cited in 42 Documents MSC: 65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs 65N15 Error bounds for boundary value problems involving PDEs 65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs 35J25 Boundary value problems for second-order elliptic equations Keywords:uniform triangulation; superconvergence; mixed finite element; triangular Raviart-Thomas type elements; a posteriori error estimator × Cite Format Result Cite Review PDF Full Text: DOI Link