×

zbMATH — the first resource for mathematics

General interface problems. II. (English) Zbl 0824.35015
This is a continuation of the authors’ previous paper [ibid. 395-429 (1994) (see the preceding review)]. The authors prove the regularity and the asymptotics of solutions in usual Sobolev spaces for nonconstant coefficients operators. The stabilization procedure is proposed when unstable decompositions appear near a critical angle.
Reviewer: H.Ding (Beijing)

MSC:
35B65 Smoothness and regularity of solutions to PDEs
35C20 Asymptotic expansions of solutions to PDEs
35J40 Boundary value problems for higher-order elliptic equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Agmon, Jour. d’Analyse Math. 6 pp 182– (1958)
[2] Agmon, Comm. Pure Appl. Math. 16 pp 121– (1963)
[3] and , ’General edge asymptotics of solutions of second order elliptic boundary value problems I and II’, Publications du Laboratoire d’Analyse Numérique, Université de Paris VI, 1991, preprint.
[4] ’Elliptic boundary value problems in corner domains. Smoothness and asymptotics of solutions’, Lecture Notes in Math., Vol. 1341, Springer, Berlin, 1988.
[5] ’The Cauchy Problem’, Encyclopedia of Math. and its Application, Vol. 18, Addison-Wesley, Reading, MA, 1983.
[6] ’Elliptic problems in nonsmooth domains’, in Monographs and Studies in Math., Vol. 24, Pitman, Boston, 1985.
[7] Perturbation Theory for Linear Operators, Springer, New York, 1966.
[8] Kondratiev, Trans. Moscow Math. Soc. 16 pp 227– (1967)
[9] Kozlov, Math. Nachr. 153 pp 123– (1991)
[10] and , Non-homogeneous Boundary Value Problems and Applications, Vol. 1. Springer, Berlin, 1972.
[11] Maz’ya, Trans. Moscow Math. Soc. 1 pp 49– (1980)
[12] Maz’ya, Amer. Math. Soc. Transl. 123 pp 1– (1984) · Zbl 0554.35035
[13] Maz’ya, Amer. Math. Soc. Transl. 123 pp 57– (1984) · Zbl 0554.35036
[14] and , ’On a problem of Babuska (stable asymptotics of the solution of the Dirichlet problem for elliptic equations of second order in domains with angular points)’, University of Linköping, 1990, preprint.
[15] Meister, Math. Meth. in the Appl. Sci. 8 pp 182–
[16] , and , ’Two media scattering problems in diffraction’, Technische Hochschule Damstadt, preprint.
[17] Meister, J. Math. Anal. Appl. 130 pp 223– (1988)
[18] Nicaise, Commn. PDE 15 pp 1475– (1990)
[19] Nicaise, J. Funct. Anal. 95 pp 195– (1991)
[20] Sändig, Z. für Anal. ihne Anwend. (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.