A finite difference scheme for computing inertial manifolds. (English) Zbl 0824.65125

A simple method is described for computing the inertial manifold of dissipative partial differential equations, the range of applications of which is rather large. The basic feature of the approach is to show that good approximations to first few eigenvalues and eigenvectors needed in inertial manifold computations can be readily obtained by an inverse Lanczos iteration without having to compute the complete eigensystem. After some theoretical background, the method is explained with the Kuramoto-Sivashinsky equation as example, and the numerical results are displayed.


65Z05 Applications to the sciences
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
35K55 Nonlinear parabolic equations


Full Text: DOI


[1] J. Bunch and D. Rose, eds.,Sparse Matrix Computations, Academic Press, New York 1976. · Zbl 0333.00007
[2] P. Constantin, C. Foias, B. Nicolaenko and R. Temam,Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations, Applied Mathematics Sciences, No. 70, Springer, Berlin 1988. · Zbl 0683.58002
[3] P. Constantin, C. Foias, B. Nicolaenko and R. Temam,Spectral barriers and Inertial manifolds for dissipative partial differential equations, J. Dynamics & Diff. Eqns.1, 45-73 (1989). · Zbl 0701.35024 · doi:10.1007/BF01048790
[4] S-N. Chow, L. Lu and G. R. Sell,Smoothness of inertial manifolds, J. Math. Anal. Appl.169, 283-312(1992). · Zbl 0767.58026 · doi:10.1016/0022-247X(92)90115-T
[5] J. Cullum and R. A. Willoughby,Lanczos and the computation in specified intervals of the spectrum of large, sparse real symmetric matrices, in [8]. · Zbl 0406.65014
[6] C. Devulder, M. Marion and E. S. Titi,On the rate of convergence of the nonlinear Galerkin methods, Math. Comp.60, 495-514 (1993). · Zbl 0783.65053 · doi:10.1090/S0025-5718-1993-1160273-1
[7] E. J. Doedel,AUTO: A program for the automatic bifurcation analysis of autonomous systems, Cong. Num.30, 264-284 (1981) (first published in Proc. 10th Manitoba Conf. on Num. Math, and Comp., Univ. of Manitoba, Winnipeg, Canada 1980).
[8] I. S. Duff and G. W. Stewart, eds.,Sparse Matrix Proceedings 1978, SIAM Publications, Philadelphia 1979.
[9] C. Foias, M. S. Jolly, I. G. Kevrekidis, G. R. Sell and E. S. Titi,On the computation of inertial manifolds, Physics Lett. A131, 433-436 (1988). · doi:10.1016/0375-9601(88)90295-2
[10] C. Foias, G. R. Sell and E. S. Titi,Exponential tracking and approximation of inertial manifolds for dissipative equations, J. Dynamics & Diff. Eqns.1, 199-224 (1989). · Zbl 0692.35053 · doi:10.1007/BF01047831
[11] C. Foias and E. S. Titi,Determining nodes, finite difference schemes and inertial manifolds, Nonlinearity4, 135-153 (1991). · Zbl 0714.34078 · doi:10.1088/0951-7715/4/1/009
[12] B. Garcia-Archilla,Some practical experience with the time integration of dissipative systems, Departmento de Mathematica Aplicado y Computation, Universidad de Valladolid, Spain, Report 1993/3. · Zbl 0854.65078
[13] G. Garcia-Archilla and J. De Frutos,Time integration of the nonlinear Galerkin method, Departmento de Mathematica Aplicado y Computation, Universidad de Valladolid, Spain, Report 1993/7. · Zbl 0823.65091
[14] J. Goodman,Stability of the Kuramoto-Sivashinsky and related systems, Comm. Pure Appl. Math.47, 293-306 (1994). · Zbl 0809.35105 · doi:10.1002/cpa.3160470304
[15] M. Graham, P. Steen and E. S. Titi,Computational efficiency and approximate inertial manifolds for a B?nard convection system, J. Nonlinear Sci.3, 153-167 (1993). · Zbl 0803.65122 · doi:10.1007/BF02429862
[16] G. H. Golub and C. F. van Loan,Matrix Computations, John Hopkins University Press, Baltimore 1983. · Zbl 0559.65011
[17] J. G. Heywood and R. Rannacher,On the question of turbulence modeling by approximate inertial manifolds and the nonlinear Galerkin method, SIAM J. Numer. Anal.30, 1603-1621 (1993). · Zbl 0791.76042 · doi:10.1137/0730083
[18] J. Il’yashenko,Global analysis of the phase portrait for the Kuramoto-Sivashinsky equation, IMA preprint #665, Inst. Math. Appl., Univ. of Minnesota, Minneapolis 1990.
[19] M. S. Jolly, I. G. Kevrekidis and E. S. Titi,Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: Analysis and computations, Phys. D44, 38-60 (1990). · Zbl 0704.58030 · doi:10.1016/0167-2789(90)90046-R
[20] M. S. Jolly, I. G. Kevrekidis and E. S. Titi,Preserving dissipation in approximate inertial forms, J. Dynamics & Diff. Eqns.3, 179-197 (1991). · Zbl 0738.35024 · doi:10.1007/BF01047708
[21] D. Jones, L. Margolin and E. S. Titi,On the effectiveness of the approximate inertial manifolds?a computational study, Theoret. Comput. Fluid Dynamics, to appear. · Zbl 0838.76066
[22] W. Kahan and B. N. Parlett,An analysis of Lanczos algorithms for symmetric matrices, ERL-M467, Univ. of California, Berkeley 1974.
[23] W. Kahan and B. N. Parlett,How far should you go with the Lanczos process?, in [1], pp. 131-144. · Zbl 0345.65017
[24] I. G. Kevrekidis, B. Nicolaenko and C. Scovel,Back in the saddle again: A computer assisted study of the Kuramoto-Sivanshinsky equation, SIAM J. Appl. Math.50, 760-790 (1990). · Zbl 0722.35011 · doi:10.1137/0150045
[25] Y. Kuramoto and T. Tsuzuki,Persistent propagation of concentration waves in dissipative media far from thermal equilibrium, Prog. Theor. Phys.55, 356-369 (1976). · doi:10.1143/PTP.55.356
[26] C. Lanczos,Applied Analysis, Dover Publications, New York 1956. · Zbl 0111.12403
[27] L. Liu and R. D. Russell,Linear system solvers for boundary value ODEs, J. Comp. and Appl. Math.45, 103-117 (1993). · Zbl 0780.65047 · doi:10.1016/0377-0427(93)90268-G
[28] M. Luskin and G. R. Sell,Approximation theories for inertial manifolds, Math. Modelling & Num. Anal.23, 445-461 (1989). · Zbl 0688.58035
[29] J. Mallet-Paret and G. R. Sell,Inertial manifolds for reaction diffusion equations in higher space dimensions, IMA Preprint No. 331, June 1987. · Zbl 0631.35047
[30] M. Marion and R. Temam, Nonlinear Galerkin methods, SIAM J. Numer. Anal.26, 1139-1157 (1990). · Zbl 0683.65083 · doi:10.1137/0726063
[31] M. Marion and R. Temam,Nonlineaer Galerkin methods: The finite element case, Numer. Math.57, 205-226 (1990). · Zbl 0702.65081 · doi:10.1007/BF01386407
[32] B. Nicolaenko, B. Sheurer and R. Temam,Some global dynamical properties of the Kuramoto-Sivashinsky equation: Nonlinear stability and attractors, Phys. D16, 155-183 (1985). · Zbl 0592.35013 · doi:10.1016/0167-2789(85)90056-9
[33] N. Parlett and J. K. Reid,Tracking the progress of the Lanczos algorithm for large symmetric eigenproblems, IMA J. Num. Anal.1, 135-155 (1981). · Zbl 0474.65022 · doi:10.1093/imanum/1.2.135
[34] R. D. Russell, D. M. Sloan and M. R. Trummer,Some numerical aspects of computing inertial manifolds, SIAM J. Sci. Stat. Comput.14, 19-43 (1993). · Zbl 0781.65101 · doi:10.1137/0914002
[35] R. D. Russell, D. M. Sloan and M. R. Trummer,On the structure of Jacobians for spectral methods for nonlinear PDEs, SIAM J. Sci. Stat. Comput.13, 541-549 (1992). · Zbl 0746.65095 · doi:10.1137/0913030
[36] J. Sacker,On invariant surfaces and bifurcation of periodic solutions of ordinary differential equations, NYU Preprint No. 333, October 1964.
[37] J. Sacker,A new approach to the perturbation theory of invariant surfaces, Comm. Pure Appl. Math.18, 717-732 (1965). · Zbl 0133.35501 · doi:10.1002/cpa.3160180409
[38] G. I. Sivashinsky,Nonlinear analysis of hydrodynamic instability in laminar flames: 1. Derivation of basic equations, Acta Astronomies4, 1177-1206 (1977). · Zbl 0427.76047 · doi:10.1016/0094-5765(77)90096-0
[39] R. Temam,Inertial manifolds and multigrid methods, SIAM J. Math. Anal.21, No. 1, 154-178 (1990). · Zbl 0715.35039 · doi:10.1137/0521009
[40] E. S. Titi,On approximate inertial manifolds to the Navier-Stokes equations, Math. Anal. & Appl.149, 540-557(1990). · Zbl 0723.35063 · doi:10.1016/0022-247X(90)90061-J
[41] R. Wallace and D. M. Sloan,Numerical solution of a nonlinear dissipative system using a pseudospectral method and inertial manifolds, Strathclyde Mathematics Res. Rep. 31, 1993, to appear in SIAM J. Sci. Comput. · Zbl 0833.65087
[42] D. S. Watkins,Fundamentals of Matrix Computations, John Wiley & Sons, New York 1991. · Zbl 0746.65022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.