zbMATH — the first resource for mathematics

Reactive transport through an array of cells with semi-permeable membranes. (English) Zbl 0824.76083
The homogenization method is applied to a problem of diffusion, convection, and nonlinear chemical reactions in a periodic array of solids surrounded by a viscous incompressible fluid. On the interface between the fluid and solid part the authors postulate the continuity of the flux and additional, in general nonlinear, transmission conditions. In the limit process as the number of solids tends to infinity and at the same time their size tends to zero while the solids concentration remains fixed, the model equations of the microprocess are solved. The convergence result of the microscopic solution towards a macroscopic one is obtained. The limit problem is a nonlinearly coupled problem with two scales, a global and a local one. In this frame the recently developed technique of two-scale convergence is used.
Reviewer: Th.Lévy (Paris)

76S05 Flows in porous media; filtration; seepage
76V05 Reaction effects in flows
35B27 Homogenization in context of PDEs; PDEs in media with periodic structure
Full Text: DOI EuDML
[1] I. AGANOVIĆ, A. MIKELIĆ, 1992, Homogenization of nonstationary flow of a two-constituent mixture through a porous medium, Asymptotic Analysis, 6, 173-189. Zbl0763.76077 MR1193110 · Zbl 0763.76077
[2] G. ALLAIRE, 1989, Homogenization of the Stokes flow in a connected porous medium, Asympt. Anal, 2, 203-222. Zbl0682.76077 MR1020348 · Zbl 0682.76077
[3] G. ALLAIRE, 1991, Homogénéisation et convergence à deux échelles. Application à un problème de convection diffusion, C. R. Acad. Sci. Paris, 312, Ser. I, 581-586. Zbl0724.46033 MR1101037 · Zbl 0724.46033
[4] T. ARBOGAST, J. DOUGLAS, U. HORNUNG, 1990, Derivation of the double porosity model of single phase fiow via homogenization theory, SIAM J. Math. Anal., 21, 823-836. Zbl0698.76106 MR1052874 · Zbl 0698.76106 · doi:10.1137/0521046
[5] T. ARBOGAST, J. DOUGLAS, U. HORNUNG, 1991, Modeling of naturally fractured reservoirs by formai homogenization techniques, Dautray R. (Ed.) Froutiers in Pure and Applied Mathematics, Elsevier, Amsterdam, 1-19. Zbl0727.76110 MR1110588 · Zbl 0727.76110
[6] N. BAKHVALOV, G. PANASENKO, 1989, Homogenization : Averaging Processes in Periodic Media, Kluwer, Dordrecht. Zbl0692.73012 MR1112788 · Zbl 0692.73012
[7] A. BENSOUSSAN, J. L. LIONS, G. PAPANICOLAOU, 1978, Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam. Zbl0404.35001 MR503330 · Zbl 0404.35001
[8] A. P. BOURGEAT, 1985, Nonlinear homogenization of two-phase flow equations J. H. Lightbourne, S. M. Rankin (Eds), Physical Mathematics and Nonlinear Partial Differential Equations, 207-212. Zbl0617.76117 MR826836 · Zbl 0617.76117
[9] A. P. BOURGEAT, 1986, Homogenization of two-phase flow equations, Proceedings Symposia Pure Mathem., 45, 157-163. Zbl0641.76094 MR843558 · Zbl 0641.76094
[10] H. BRÉZIS, 1972, Problèmes unilatéraux, J. Math. pures et appl., 51, 1-168. Zbl0237.35001 MR428137 · Zbl 0237.35001
[11] E. CANON, W. JÄGER, Homogenization for nonlinear adsorption-diffusion processes in porous media, to appear.
[12] D. CIORANESCU, J. SAINT-JEAN-PAULIN, 1979, Homogenization in open sets with holes, J. Math. Anal. Appl., 71, 590-607. Zbl0427.35073 MR548785 · Zbl 0427.35073 · doi:10.1016/0022-247X(79)90211-7
[13] I. EKELAND, R. TEMAM, 1976, Convex Analysis and Variational Problems, North-Holland, Amsterdam. Zbl0322.90046 MR463994 · Zbl 0322.90046
[14] A. FRIEDMAN, P. KNABNER, A Transport Model with Micro-and Macro-Structure, J. Differ. Equ., to appear. Zbl0749.76073 · Zbl 0749.76073 · doi:10.1016/0022-0396(92)90096-6
[15] K. GROGER, 1971, Zum Rand-Anfangswertproblem der Adsorption und Diffusion bei Festbettprozessen, Mathem. Nachr., 49, 251-259. Zbl0307.35078 MR312832 · Zbl 0307.35078 · doi:10.1002/mana.19710490117
[16] U. HORNUNG, 1991, Homogenization of Miscible Displacement in Unsaturated Aggregated Soils, G. Dal Maso, G. F. Dell’Antonio (Eds.) Composite Media and Homogenization Theory, Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser, Boston, 143-153. Zbl0726.73061 MR1145749 · Zbl 0726.73061
[17] U. HORNUNG, 1991, Miscible displacement in porous media influenced by mobile and immobile water, Rocky Mountain J. Math., 21, 645-669 corr. 1153-1158. Zbl0751.76062 MR1121532 · Zbl 0751.76062 · doi:10.1216/rmjm/1181072958
[18] U. HORNUNG, 1992, Applications of the homogenization method to flow and transport in porous media Xiao Shutie (Ed.) Summer School on Flow and Transport in Porous Media, World Scientific Publisher, Singapore, 167-222. Zbl0790.76092 · Zbl 0790.76092
[19] U. HORNUNG, W. JÄGER, 1987, A model for chemical reactions in porous media J. Warnatz, W. Jäger (Eds.) Complex Chemical Reaction Systems. Mathematical Modeling and Simulation, Chemical Physics, 47, 318-334. MR924854
[20] U. HORNUNG, W. JÄGER, 1991, Diffusion, convection, adsorption, and reaction of chemicals in porous media, J. Differ. Equat., 92, 199-225. Zbl0731.76080 MR1120903 · Zbl 0731.76080 · doi:10.1016/0022-0396(91)90047-D
[21] U. HORNUNG, R. SHOWALTER, 1990, Diffusion models for fractured media, J. Math. Anal. Applics, 147, 69-80. Zbl0703.76080 MR1044687 · Zbl 0703.76080 · doi:10.1016/0022-247X(90)90385-S
[22] J. L. LIONS, 1969, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod/Gauthier-Villars, Paris. Zbl0189.40603 MR259693 · Zbl 0189.40603
[23] R. LIPTON, A. AVELLANEDA, 1990, A Darcy law for slow viscous flow past a stationary array of bubbles, Proc. Royal Soc. Edinburgh, 114A, 71-79. Zbl0850.76778 · Zbl 0850.76778 · doi:10.1017/S0308210500024276
[24] A. MIKELIĆ, 1989, A convergence theorem for homogenization of two-phase miscible flow through fractured reservoirs with uniform fracture distributions, Applicable Analysis, 33, 203-214. Zbl0653.76067 MR1030108 · Zbl 0653.76067 · doi:10.1080/00036818908839873
[25] A. MIKELIĆ, 1991, Homogenization of nonstationary Navier-Stokes equations in a domain with grained boundary, Ann, Mat. Pura e Appl., 158, 167-179. Zbl0758.35007 MR1131849 · Zbl 0758.35007 · doi:10.1007/BF01759303
[26] A. MIKELIĆ, I. AGANOVIĆ, 1987, Homogenization in a porous medium under a nonhomogeneous boundary condition, Boll. Un. Mat. Ital. (A) 1, 171-180. Zbl0629.76102 MR898276 · Zbl 0629.76102
[27] A. MIKELIĆ, I. AGANOVIĆ, 1988, Homogenization of stationary flow of miscible fluids in a domain with a grained boundary, SIAM J. Math. Anal., 19, 287-294. Zbl0645.76099 MR930027 · Zbl 0645.76099 · doi:10.1137/0519021
[28] F. MURAT, 1978, Compacité par compensation, Ann. Scuola Norm. Sup. Pisa, Ser. 4, 5, 489-507. Zbl0399.46022 MR506997 · Zbl 0399.46022 · numdam:ASNSP_1978_4_5_3_489_0 · eudml:83787
[29] G. NGUETSENG, 1989, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20, 608-623. Zbl0688.35007 MR990867 · Zbl 0688.35007 · doi:10.1137/0520043
[30] O. A. OLEINIK, S. M. KOZLOV, V. V. ZHIKOV, 1991, Homogenization Differential Operators, North-Holland, Amsterdam.
[31] E. SANCHEZ-PALENCIA, 1980, Non-Homogeneous Media and Vibration Theory, Springer Lecture Notes in Physics, 129. Zbl0432.70002 MR578345 · Zbl 0432.70002
[32] K. SATTEL-SCHWIND, 1988, Untersuchung über Diffusionsvorgänge bei der Gelpermeations-Chromatographie von Poly-p-Methylstyrol, Dissertation, Fachbereich Chemie, Universität Heidelberg.
[33] K. SIEBEL, 1988, Diffusion in dispersen Medien. Homogenisierung, Diplomarbeit Fachbereich Mathematik, Universitat Heidelberg.
[34] J. SIMON, 1987, Compact sets in the space Lp(0, T ; B), Ann. Mat. Pura e Appl., 145, 65-96. Zbl0629.46031 MR916688 · Zbl 0629.46031 · doi:10.1007/BF01762360
[35] L. TARTAR, 1980, Incompressible fluid flow in a porous medium - convergence of the homogenization process, E. Sanchez-Palencia (Ed.) < Non-homogeneous media and vibration theory > Lecture Notes in Physics, 127, Springer, Berlin, 368-377.
[36] C. VOGT, 1982, A homogenization theorem leading to a Volterra integro-differential equation for permeation chromatography, Preprint 155, SFB 123, Universität Heidelberg.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.